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L"2-CURVATURE PINCHING

L. ZHIYONG GAO

The famous sphere theroem states that a complete, simply connected
1/4-pinched manifold is homeomorphic to the standard sphere [2], [22],
[26]. It is also known that the homeomorphism theorem can be sharpened
to a diffeomorphism theorem, if a more restrictive pinching condition is
imposed [12], [27], [28], [20].

On the other hand, Gromov proved the negative pinching theorem pro-
vide the pinching constant also depending on the diameter of the manifold
[14], [17].

In this paper we prove pinching theorems for L"?_curvature bounded
Riemannian manifolds. We denote the norm of the curvature tensor
Rm(g) of the metric g by |Rm(g)|. Our main results may now be
stated as follows.

Theorem A. For any i, > 0, H > 0, and integer n > 4, there ex-
ists a constant p = u(H, iy, n) > 0, such that if (M, g) is a complete
Riemannian manifold with diamM =n > 4, and

(a) Ric(g) > -Hg,

(b) inj(g) > i,

(c)
max |Rm(g)|"*dg < H,
xeM Bio(x)
(d)
2
R(g). . —(g,8,— 8,8, ) dg<u,
I.;Cl‘éa;} B, (x)l (g)l.]kl (glkg_jl gz[g_]k)l g U

0
then M is homotopic to a Riemannian manifold M of positive constant
sectional curvature, in particular, M is compact. Furthermore, M is cov-
ered by a topological sphere.
Theorem B. Foreach H >0, i, >0, d >0, and integer n > 4, there
exists a small constant u = u(H, iy, d, n) >0, such that if (M, g) isa
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compact Riemannian manifold with dimM =n > 4, and
(a) Ric(g) > -Hg,
(b) inj(g) > i, >0,
(c)

XEM Jg

mn/" \Rm(g)2dg < H,
(x)

(d)

2
frnez}\)l( 5 ) IR(g)ijkl _A(gikgj1 - gugjk)l dg<u,
‘0

where A= —1 or 0.

(e) diam(g) < d,
then M is homotopic to a manifold with constant sectional curvature A =
-1 or 0.

Using the results of Kervaire and Milnor in [21], we have

Corollary C. If (M, g) isas in Theorem A, andif n <6, then M is
covered by a diffeomorphism sphere.

If inj(M, g) > i, > 0, we can consider the metric on a geodesic ball
Bio(x) in polar coordinate {r, #} on Bio(x),

g=dr +g(r,

where g(r) are metrics on the sphere $" ' = {x e R", |x| = 1}.

As a consequence of the proof, we have the following interesting result
(see §2).

Theorem D. Let (M, g) be a complete Riemannian manifold with
dim M =n > 2, such that

(a) Ric(g) 2 —Hg,

(b) inj(g) > i, >0,
and forany x e M,

(c)
nj/2

/ |Rm(g)"? dg < K.
B, (x)

Then there exist constants
C,=C/(H,K,iy,n)>0, Cy=Cy(H,K,iy,n) >0,
and a diffeomorphism ¢: 8" ' — "', such that
0<e “"de* < ¢ g(r) < e“ do?,

where d©* is the standard metric on S"".
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For the proofs.of the main theorems it is worth noticing that there is
no evolution equation method available as in the case of

/ IRm[? < K < 0, p > n.
M

as given in 36. Instead, we develop a series of estimates on the metric
which are based on integral bounds on curvature, but are not consequences
of the Rauch comparison theorem. L"?* curvature pinching is much more
interesting and far more difficult than L” /2 curvature pinching, p > n.
The difhculty is caused by the facts that the power 7n/2 of L™? curvature
pinching is the same as the critical power of Sobolev inequality and that
the L™?-norm of curvature is a scale invariant.

Remark 0.1. In some sense, the bound on the scale invariant L.
norm of curvature is necessary. In fact, M. Gromov pointed out that
any compact manifold M carries Riemannian metrics of volume 1 with
I*-norm of curvature as small as you like for p < n/2.

Remark 0.2. The constant u(H, i;, n) is not estimated explicitly here,
although an estimation may be possible, but would be very complicated.
We use a noneffective argument.

The proofs of the theorems will be given in the remaining sections which
are organized as follows.

1. First order estimate on geodesic balls.
Zero order estimate on geodesic balls,
The diameter estimate of small geodesic sphere.
L"?_curvature pinching estimates.
L"?_curvature pinching theorems.
6. Miscellaneous results.

nh e

In §1, we first prove a metric comparison result of concentrated geodesic
spheres by using the lower bounds of Ricci curvature and injectivity radius.
We then use it to derive the L” estimate of the second fundamental form
of small geodesic spheres. Thus, combined with the Gauss equations, this
result implies an estimate on the L"?-norm of curvature tensor of (n—1)-
dimensional geodesic spheres with controlled radius.

In §2, we study the geodesic spheres with L"?.norm of curvature bound-
ed. We are able to use the evolution equation [19] to deform the metrics
on such spheres. Since the exponent n/2 of the L"?-norm of curva-
ture is greater than the critical exponent (n — 1)/2 of the scale invariant
L™ Y2 norm of curvature of geodesic spheres, the evolution equation is
well behaved. Here, the lower bound of the injectivity radius is used to
obtain a Sobolev inequality on small geodesic balls ([7], [6] and [5]), which
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then implies a weaker but more suitable version of the Sobolev inequality
on geodesic spheres.

In §3, we use the precompactness theorem of Gromov to give a diameter
estimate of small geodesic spheres, which is needed in §2 to estimate the
metric of the geodesic sphere of fixed radius.

In §4, we estimate the second fundamental form of small geodesic
spheres. We do this by bounding the L* distance of the second fundamen-
tal form and b(r)g(r) of the geodesic sphere with metric g(r) and radius
r by using integral estimate on Jacobi fields (see §4 for the definition of
b(r)). This is used to estimate the L'-norm of scalar curvature free part
of curvature tensor. Due to the nature of If estimates, the estimates are
somewhat complicated.

In §5, we prove the theorems by contradiction. We start with a sequence
of Riemannian manifolds with the bounds as in Theorems A and B. We
show that the geodesic spheres of fixed radius converge to the standard
geodesic sphere of space form of the same radius, and the metric tensor
converges to the standard metric tensor of space form in L"*-norm. These
are used to show that the limit manifold is a space form. We then prove
that many manifolds of the given sequence are homotopic to the limit
manifold; this part of the argument is taken from [18].

We refer to [13], [4], [17], [19], and [20] for basic tools and results in
Riemannian geometry, which will be used freely.

1. First order estimate on geodesic balls

Let us consider an n-dimensional (n > 4) compact Riemannian mani-
fold M with metric g, and denote by Rm(g) and Ric(g) the Riemann
curvature tensor and Ricci curvature tensor of the metric g respectively.
We denote the injectivity radius of g by inj(g). Throughout this section
we shall make the following hypothesis.

Assumption 1.1. There exist constants H > 0 and I, > 0, such that

(a) Ric(g)>-Hg.
(b) inj(g) > i, >0, iy <7/2.

We fix a point x, € M. Let B (x,) = {x € M:d(x,, x) < p} be
the geodesic ball of M at x;, with radius p < i,; here d is the in-
duced distance function on M . We consider any geodesic polar coordinate
{r,x',---,x"7'} on B,(x,). By identifying B, (x,) with the Euclidean
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ball B, ={veR"; |[v|< p}, we have

2 i J

(1.2) g=dr +Zgij(r,x)dx dx’,

1 8* ki O
(1.3) Rirrj=§(9 2g11+4zg E zkar &>
where f(x) = d(x, x,), and {xl RN x"_l} is any coordinate on the
unit sphere $" ' = {v e R", |vl =1}. (1.3) implies that

9 o, 2

(1.4) R = ln\/_ 71578
where

VEdw = [det(g,)dx' A+ A dx"T,

for the standard volume form dw of S, = s" ' cR", and

6g 2 ij kil 7] 19}
ar|, =288 gréuprsi
It is an interesting and important fact that (%gl. ; can be estimated by

the constants in Assumption 1.1. The next few paragraphs are devoted to
the proof of such estimates.
Proposition 1.5. For p < %i,, we have

,
0

Proof. Taking ¢ to be a piecewise smooth function of r with ¢(p) =
0, noting that

2

9 ol ar<c,H, np.

Eg

.20
lgrg)r B—rln\/§—0,

using (1.4), and integrating by parts, we have

p
/ r2¢2R"dr=—% r2¢2—(—9—lngdr——/ g dr
0
1 ﬂa 22,0 2
=3, 505 “‘g"’"/ 5ol @

- 1/p(2r¢2+2r2¢¢’)—1n dr
=3/ ar 8

9
6rg

1 [? >
_Zor¢

R 2
dr.
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The Cauchy inequality gives

2
<(n-1) ~8—g

g-ln
ar &

and, therefore,

p p
/ r¢'R drs/ {rgbz\/n—l 9 +r2¢|¢']\/n—l}ig'}dr
0 rr 0 or ar
1?2208 |
- Z/0 r'g Eg’ dr.

Applying the Cauchy inequality 2ab < ea’ + %bz to the first and second
terms on the right-hand side, we obtain

(1.7)
P32 1 /712, 2210 |
/(,r¢R”drS§/(, (Er¢(n—1)+sr¢ g;g
1 2 2200
+'£(n“1)¢ +erg Eg )d"
1 (72200 |
—Z/O ) 57g dr |
1 P 5alo | (n=1) 2, 2.2 2
<=(3-2) [ 765 ar+ g[8
and hence
0 2
(%—8)/ r2¢2 g—g dr
(1.8) 0 !

_ P p
<! 1/ (r2¢2+¢2)dr—/ ro’R,,.
2e 0 0
Taking ¢ =1/8 and ¢ = p —r in (1.8), we get

2
/Oprz(p—r)z %g dr < 32(n - 1)/p(r2+(p—r)2)dr

0

p
+H/ rz(p—r)zdr
0

< C(H, n)p’)

1 ) 2| 8
drSWA rp—r) Eg

and, therefore,

/528
r
0

2 2 1
el < Z )
arg dr < 2CI(H,n)p
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This completes the proof of Proposition 1.5.
Proposition 1.9. For r < 1i,, we have

8| < C(H, iy, n).

Proof. Using (1.4) again, and integrating by parts, we have
(1.10)

r 1 (" 282 1 {7 5|8 2
R dr=-= | P51 - 2
'/0 r'R, dr 7 o2 ngdr 4/0 15,8 dr
1 za L (7210 )
=-3"3; lng+2/ 2r— lng 4/ 5 dr.

Combining (1.10) and Proposition 1.5 with the Cauchy inequality yields

o\ 1/2
) 2

5 12 .
dr) /2

g
<C(H,iy,m)r+vn-1C/(H, n)l/zr < C2(H‘, iy, W)r,

which is just Proposition 1.9.

Remark. One should note that Proposition 1.9 does not imply that
|£,/&! < C. In the case of bounded sectional curvature, the Rauch com-
parison theorem gives that [%\/E |<C.

As a consequence of Proposition 1.5, we can compare the induced met-
rics g(r) =g, (r, x)dx'dx’ on the geodesic spheres S,(x,) = {x € M,
d(x, x,) =r} for r < $i;.

Proposition 1.11.  There exists a constant C,(H , n) > 0, such that

e O g(r)) < g(ry) < €N

20 "2 1 " 2|0
= < —
r arln,/g_H/O r dr+4C1(H,n)r+(/o "5,

" 2] 0
3Hr + - C(H n)r+((n—1)/0r a—rg

g(r)
Jor 0<r <r,< i
Proof. From Proposition 1.5 it follows that

r r o 2 172
(1.12) / r dr< (/ P dr) rl/ngll/zr
0 0

Eg
for r < 1i,. Taking a fixed vector v = (v,) € TS, and letting A{r) =
g(r)(v, v) = Zg; (r, x)v'v’, we have

o)
Eh

9
6rg

0 é]
251 < || 0.
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which gives
’ —Inh(r

) <[5,

Thus, combining this with (1.12), we obtain

r. r.
hry) 3/2 a’rs—l—/zra
r r1 0

h(r,)
< C‘/”? = Cy(H, n)%,

ilnh

In EP

’a’r

and hence

e_C’z/’l < h(rz) <e

h(ry)
Since v is any vector of TS|, this implies Proposition 1.11.

Proposition 1.11 gives the ratio estimate of the metrics g(r) on S,.(x;).
Our first main goal is to estimate g(r). To this end, we need to control
the L"?-norm of the Riemann curvature tensor Rm(r) = Rm(g(r)) of
g(r) on S .(x,). The next few paragraphs are devoted to such estimates.

We make the following hypothesis.

Assumption 1.13. Let p = i, > 0. There exists a constant K > 0,
such that for any x, € M

/ |Rm|"/2dg§K.
B (x,)

Ciny/ry

Theorem 1.14. For any p <1i,/4, there exists r,> 0 such that p/2 <

r, <P, and
n/2

= 1
Rm(r dg < C,—
/Srp(xo) | ( p) # 4rp
Jor a constant C, = C,(H, K, i,,n)>0.
Remark 1.14(a). In general, for any 0 <7 < i;/4, we have

/ Rm(g )"/2a’g<C(H K, iy, n,F).
B, 14(X0)—B,(x,)

First we recall a well-known volume estimate of Bishop [3].

Lemma 1.15. For r < i, there is a constant Cy = C(H, iy, n), such
that Jg§ < Cr" ',

We start with several lemmas.

Lemma 1.16. Given a geodesic y with length | < iy/2, and a Jacobi
field Y on y, such that Y( (0)) =0 and (Y(y()), y(I)) =0, we have

G 2
YOOI < e Y ()
Jor 0<r <r,<I, and C3 in Proposition 1.11.
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Proof. Since / <i,/2 and y is a minimal geodesic, we take x, = y(0)
and choose the polar geodesic coordinate {r, x', e, x"'l} on B(x,)
such that 8/(9)61 =Y(y(])) at y(I). Thus 3/(9)61 =Y on y, and Propo-
sition 1.11 implies the lemma.

Lemma 1.17. Given a geodesic y with length | < i,/4, and a Jacobi
vector field Y on y such that Y (y(0)) =0 and (Y(y(1)), (1)) =0, there
exists a constant C, = Co(H , iy, n) >0, such that

1Y (7(0)] < Gl Y (»(D))

for 0<t <.
Proof. Let 7 be an extension of y defined as follows:
()_{)’(t>, 0<t<l,
P U exp, ) 07(0), —~I1<t<0.

Then 7 has length 2/ <i,/2, and 7 is a minimal geodesic. There exists
a unique Jacobi vector field Y along 7, such that Y(3(/)) = Y(y(/)), and

Y(»(=1)) = 0. Applying Lemma 1.16 to Y and Y in turn, we obtain
(1.18) T < ST = S YeW)) fort>0,

(1.19) YO <Y fort>1)2.

On the other hand, letting Z =Y —Y on 7, we have (Z,y') =0, and
Z{y(1)) =0. Applying Lemma 1.16 again gives

1Z((0)| < N ZO) = ST O0)) forz< /2.
Combining this with (1.18) and (1.19), we deduce
Y (2(0))] < TGO +1Z@@)| <28 Y(p(1)] fort <1/2,
1Y (2(0)] < €Y (p(1))| for z>1/2.

We finish the proof of Lemma 1.17 by taking C, = 2%

Lemma 1.20. There exists a constant Cy = C4(H, iy, n) > 0, such
that for each p < i,/4, we have

/ o
B, (%)= B, (x,) | 9

[
5.

5.8

p dg <66/ |Rm(g)l"/2 dg +
B,(xy)

Proof. Let B be the second fundamental form of S, (x,). Then we
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and |(—9‘9—rg|2 = 4|B|2 is independent of the choice of coordinate {xi} . For
a fixed point y € S (x,), we choose a coordinate {x'} on S (%) > such

that 5 5
—_—, — = 5
ax' ox’ M

at y. Let us denote a/ax" by Y, on Bp(xo). Then Y, is a Jacobi

1
vector field along the geodesic y(r) = {r, y} € Bp (x,), and we have Yl." +
R(Y,, T)T =0, where T = v'(r) is the tangent vector field of y. We take
the parallel vector fields E; and E, along 7, such that E,(p) = Y,(p) and
E(p/2) = Y(p/2). Thus by Lemma 1.17, |Y,(r)| < C, and |E,(p)| <
Cy, |E;| < C, for r < p. Defining the vector field 4; on y by

_ (r=p/2) (p—1+ p
(1.21) A, (r)=Y,(r) - WE"(’) a7 E(r), 5<r<p,

we then have
|4;(r| <3C, A;(p/2)=0, A;(p)=0,
A +R(Y,, T)T =0.
We now integrate by parts,

14 14
/ A" dr = / (A, ANA 2 dr,
p/2 p/2

which gives, in consequence of equation Ai.' +R(Y;, T)T =0,

14 14
A dr=— | (4", A\ A" dr
o/2 i 0/2 IR i

P
~(n=2) [ AN A dr
p/2
P
- +/ (R(Y,, T)T, A A" dr
p/2
p ! 1n—4 !
+(n=2) [ (Al ANAITH R, DT A dr
p/2
P P
< 3C§/ |Rm|[A:.l"_2dr+(n—2)3C62/ |Rm | (4|2 dr
p/2 p/2

gC(H,zO,n)/

p
Then the Hélder inequality implies

L , /2 e n =i
/ A"dr < C / |Rm [ dr / A" dr ,
p/2 p/2 212

P
|Rm||4}]" 2 dr.
/2
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that is,
p p
f |A;|"drgcf |Rm |2 dr,
p/2 p/2
or
nzloep p )
(1.22) Zf |A;|"drgcf |Rm " dr.
=1 Y o/2 p/2

Using (1.21)', we have
A, =Y, - %Ei+ %E‘i,

which combines with (1.22) to imply
(1.23) Zf Y| dr < —+c/ |Rm |2 dr.
We now consider

<4Zg” Y YNy, Y,

which, together w1th |Y;| < C6 , gives

2
it jt
<CY g Y|yl

Note that g, j(p) = 51.]. at ye S p(xo) . Applying Proposition 1.11, we then
have |gij(r)| < C on y for p/2<r< p,and hence

2
<cY P,

9
arg

9
8rg

which clearly implies that

9,0
arg
This with the help of (1.23) yields

P n 1 P n/2 '
/ dr<C(H, iy, n) —,,+/ IRm|"“dr}.
p/2 p p/2 ,

We now note that |£¢|" and |[Rm|" are independent of the choice of
{x'} on § ,(Xy) . For any such {x;} we have by Proposition 1.11,

C(H, iy, n)"'Va(p) < va(r) < C(H, iy, n)\/g(p)

<CH, iy, m)Y_|Y]|".

9
arg
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on y(r), p/2 <r < p. This implies
L.l5
/2

Integrating over S p(xo) , we then obtain

ar
/Bp(xo)-—Bpﬂ(xO)

Using Lemma 1.15, we have

/Bp(xo)—Bp/z(xo)

We take p = i,/4; then

" 1~ ’ n/2
\/EdrSC<—n\/§(P)+/ |Rm | \/Edr)-
P p/2

9
Brg

n
dggci,,/ dg+C/ |Rm["?dg.
P IS, (x) B, (%)

mg

X,)

dg§£+C/ |Rm|["*dg.
p B

(1.24) / gl dg < Cy(H, iy, n)+€6/ |Rm [ dg.
B;1a(x0)—Bj, 15(xo) B, 1a(xo)

For any p < %io , applying (1.24) to the metric g = ‘c_zg, where 7 =

4p/i,, and noting that Ric(g') > —Hg; inj(g) > i, by the scale invari-

ance of (1.24), we then finally obtain

n
/ el de= |
B, (%)= B, 5(x,) 0 B, ,,—B

7578
ig/a” Pig/8

n

r

Now we are ready to prove Theorem 1.14.
Proof of Theorem 1.14. From Lemma 1.20, we have

(1.25) /p;/s

Let us recall the Gauss formula on S, (x,),

= 1(8 8 9 9
Rijwi =Rijp + 7 \ 57 8ikp,8i1 ~ 578ikpr8it)

which, together with (1.25), implies that

p = 2 g p nj2 -
(1.26) / /]Rm(g)l dgdrSC/ / |IRm |, " dgdr+C.
p/2Js, o2 Js,

n
dgdr<C(H,K, iy, n).

9
c’)rg
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(1.26) means that there exists an r,>0 with p/2 < r, < p, such that

/ i )

This completes the proof of Theorem 1.14.
Remark 1.14(a) follows from above; the only change is that we have to
replace every constant by a constant which also depends on 7.

"2ye <ol
T

2. Zero order estimate on geodesic balls

In this section we state and prove the central estimates of the paper, a
compactness estimate of the metric g on geodesic balls.

Let (M, g) be a Riemannian manifold as in §1.

Theorem 2.1. For any p < i,/4, there exist r, >0 asin Theorem
1.14, a constant C, = C,(H, K, iy, n) > 0 and a smooth Riemannian
metric h(r ,) on the geodesic sphere Srp (xo)» such that

C; 'g(r,) <ra(r,) < C8(r,)
and |Rm(h)| < C,.
First, let us recall a well-known result ([7], [6], [5]).

Theorem 2.2. If p < iy/2, then there is a constant Cg = Cg(n) > 0
such that for any f € C;°(U,(x,)), we have

(n—=1)/n

—1
(/ e )) <c, / Vfldg,
Bp(xo) Bp(xo)

where U (x,) ={x e M, d(x, x,) < p} is an open geodesic ball of g .
Using Theorem 2.2 and the Holder inequality, and replacing f in The-

orem 2.2 by a power |f]2""1/"72 of |f], we can prove the following.
Theorem 2.3. For p <iy/2 and f € C§°(Up(x0)), we have

(/Bp(xo) ,f,Zn/(n—Z) dg) (n—2)/n . (2 (: : ;)>2

Let us now consider the metric 2(r) on S,(x,), and define a new metric
h(r) on §,(x,) by

G| vsids.
B, (%))

P

h(r) = r—‘2g<r>.

We need to prove a Sobolev inequality for the metric 4(r) on S,(x,).
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To start, from Proposition 1.11, we have
2
— r - . -
(2.4) e~ Gnn (r—l> h(r,) < h(r,) < e""1R(r))
2

for 0<r, <r,<iy/2. :
Theorem 25. ForO<r<iy/4, there exists a constant Cy = C, (H iy> 1)
> 0, such that, forany 0 <1< r.and f € CT(S,(xy)), we have

(n=2)/n
1 / 2n/(n=2) ,_ / 2, 1/ 2,
- d <C, Vfl'dg + = dg].
727 ( S'(xo)lfl g) - = 9( s,l fl"dg 7 S'f g

Proof. “We take a cut-off function ¢: [r, r /] — [0, 1], such that ¢(r) =
0, ¢(r+1)=0, ¢(t) =1 for r+1/4<t<r+3l/4, and ¢ is'linear on
[r,r+1/4] and [r+3[/4, r+[]. We have

vel=11<T

We can consider ¢/ as a function on B (x,) with supportin B _,(x,) -
U,(x,) . Applying Theorem 2.3 to ¢, we obtain

r+l 2n/ (n=2) r+i
1/ / I agar) - <c / / V()P
r+l ’ r+l .
sc{/ / |Vf|gdgdt+l—2/» 7 dgdt}.
r S, (%) r S, (xp)

Since / < r and all the metrics g(¢t) for ¢t € [r, r +[] are equivalent by
Proposition 1.11, we can replace the metrics g(t) for t €[r,r+1] by
g(r). Thus we have . :

{1 : mf(n—2) (=2l
Le / P ag)
5,(%,) ;
r+l A (n=2)/n
< / / eV dgdt
roJI8,(xp) '
2 1 2,3\
sc(z/ vitdgy [ s dg),
Sr(xo) S,(Xo)

which clearly implies Theorem 2.5.
We identify S,(x,) with §; C R”, and consider g(r) and h(r) to be
metrics on .S, . From Theorem 2.5, we obtain
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Corollary 2.6. For 0 <r<iy/4, 0<I<r,and f€ C™(S,), we have

n-2)/2
Lz/,, (/ Vi 2)dh> scg{/ VS a’h+—/ f dh}

here L=1/r and 0 < L < 1.
For the metric A(r) on §, from Theorem 1.1.4, we also obtain
Corollary 2.7. For any p < iy/4, there exists r, 20, such that p <
r<2p and

(28) |, R, )" dlicr) < €

We now use the evolution equation of Hamilton [19] to deform the
metric h(r p) . We fix p < i /4 for the next few paragraphs, and consider
the evolution equation

(2.9) g—th(z) = —2Ric(h),

where /4(0) = A(r,). From [19], we have
Theorem 2.10.. The evolution equation

3]

at
has a unique solution on a maximal time interval 0 < t <t < o0o. If
T < oo, then maxg |[Rm(h)| -0 as t > T.

We shall estimate the T for 7z(rp) from below by a constant which
depends only on H, K, i;, and 7, and estimate the uniform norm of
Rm{%). We start with the following.

Theorem 2.11. There exist

h,; = —2Ric(h),;

T=TH,K,ij,n)>0 and Cy=C,(H,K,i,,n)>0,

such that (2.9) has a solution on [0, T], and for t€[0,T], 0<L <1,
f € C™(S,), we have the following: ‘
(a)
/ |Rm(h)"? dh < 2C,,
SI

(b)

n-2)/n
Lz/,, (/ Vi dh) < 2G, {/ IV /1 dh+—/ f dh}
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CIO
Tl—l/n

2/n
|Rm<h>|"/2dh) < (€)™,

Proof. Note that (a) and (b) are satisfied at 1 = 0. We take 1 > 0 to
be the maximal number such that (2.9) has a solution on [0, #), and (a),
(b) hold on [0, ). We may assume that # < 1. First we prove

Lemma 2.12. (c) is satisfied on [0, n).

Proof. Letting 1[0, #1), we have

9 p(ty = ~2Ric(h)
ot ’

which is invariant under the transformation ¢ — 7¢ and hij(z) —
(1/7)h;;(2t) = h;,(¢) . Thus we obtain

o o
52k (1) = =2Ric(k)

for ', and this equation has a solution on [0, 1]. For this metric 4’ , we
have

(a,)

/lRm )2 di = ‘/2/ |Rm(h)["2dk <2C,7",

(by)

-2)/2
2 ’ T 2 ’
Lz/n(/ |f|_dh> Szcg{,/gl|Vf| dh+?,/glf dh}

forany 0< L <1 and feC™(S)). Let L= L/t"*. Then I can take
any value on (0, 1}, and (b, ) can be rewritten as
(b,;)

(n=2)/n
%/n (/ Iflzn/(n—z)dhf) gzcg{/ |Vf|2dh’+_i2/ fzdh’}.
T s, S, L Js,

From [18] it follows that

(2.13) %|Rm|2 <ARm|* = 2|[VRm [ + C(n)|Rm/’.
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For p > 1, by integrating and using (2.13), we obtain
(2.14)

9 2p 1
E/SI |Rm |™ dh
S2P/ |Rm|2(p—1)(ARm,Rm)dh'+cp/ |Rm|2p+1 an
M s,
< ~2P/ [Rm|2(p_1)[VRm|2dh' —4p(p-1)
Sl

x/ |Rm|2(p—2)(VRm,Rm)zdh'+Cp/ |Rm|2p+ldh'
s, 5,

S-(.(_[_';l_)_+z)/ IVlRm|p|2dh'+Cp/ |Rm‘2p+1dh/’
p p S, 5
so that

(2.15) 9—/ ]Rm]zpdh'+/ |VlRm|p|2dh5Cp/ |Rm|?*" a¥.
at Js, s, s,

Similarly, for any nonnegative function ¢ of ¢, we have

% (¢>/S 1Rm|2”dh') +¢/S. \V|Rm |p|’| di’

(2.16) .
< Cp¢/ |Rm[”*' ab’ + (d—¢)/ |Rm [ dk.
s, t s,

Now we use the standard Di Geogi-Nash-Moser iteration. We take ¢(¢) =
1 for t > 8", ¢(¢t) =0 for t <J, and ¢ is linear on [4, &']. For such
¢, we obtain

d 1
2.17 =120l < —n.
(2.17) 19| ‘a’t(ﬁ'_((s’—d)
For each p > 1, we take L small, such that

1 2
T2 = 4cyc(n)p(2c,) "y 4cy > 1.
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Applying (b, ) and (2.16) yields

2 (¢ / IRm/” dh') +30 (VIR aH

(n—=2)/n
)

gcms/ |IRm [?* dn’ +1}2/ IRm [ dh'
S, 2T Js,

+
N[ —

218 +¢L|Rm|?”dh".

Let « = n/(n— 2) > 1. By the Holder inequality we have

aéi (¢>/S |Rm | dh') + %¢/|V|Rrﬁ I’ dh’
“+(,
< cpg ( / |Rm " dh') . ( / |Rm|"? dh')m

/|Rm|2"dh+ /{R 4
which implies

1/x
a% (¢/|Rm|2p dh’) + l¢/|V| Rm|’|*dh + ¢ (/|Rm|2"">
<———/|R 7 dh' 4+ /lR g

so that

% (¢f|Rmk;2"dh’) +6 (/llez’mdh'> 1/K+ l<;5/)V1Rm P12 dn’
<CWH.K, iy, n)p" /|Rm|2”dh + 5/]Rm|2”a’h

Hy0)= [ (/S

D,,(8) = / (/ |V|Rm||dh)

2pK i ' 1
|Rm | %" dh S

Let

[Rm|” dh') dt,
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My, (8) = max/ \Rm | di.

a<t<

From (2.18) by integrating from § to 1, we obtain

’ n 1

(2.19) M,,(6) < Cp" 5—=H,,(9),
I n 1

(2.20) D, (6")<Cp mHzp(a)-

Lemma 2,21, For k =(n+2)/n>1,
2
H,, (8) < CM,,(8)""" (H,,(8) + D, (8))-
Proof. By the Holder inequality,

! 2pk ! ! 2p+4p/n !
Hzpk(d)z/ / |Rm [?* dh a’ts/ (/;Rm| a’h)
s \Us, 5
1 - , 1/x ) , 2/n
(2.22) 5/ (/|Rm|” a’h) </|Rm|”dh>
)
< M. (52" ! e \*
<, 0" [ ([ 1Rm P an’)

Taking L =1 in (b ), and applying (b, ) to the right-hand side of (2.22),
we obtain s
H,,.(6) < CM,, (3" (H,,(8) + D,, ().

Using (2.19), (2.20), and Lemma 2.21, we then have
, e f 1 \F %
HZPR(J ) < Cp (m) HZP(J) .

Hence, for g =2p > 1,

0 -0 ?
Let g, =k"qy, 0, =3—%2"", 8,0, = 270+ andlet ®(q, 8) =

H,(6)"?. Then (2.23) implies that

(2.23) H (6)<C\(H,K, iy, n)g" (L) H (6).

®(g ><c”" (@) (2" (g, 8, ))

(m+ )R

<CE (g )W(R)W(%W‘D@m-l » Oni)
GQERI

m’m

< CR = (g, )qo ()% = (2)5 = (g, 5,)
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Letting m — oo, and taking limits, we obtain
®(c0, 1) < €, ®(gy, 0).
Taking g, = n/2 and C,; = C|,(H, K, i, n) yields

1 2/n
max |Rm(k)| = C,, (/ / |Rm|"/2a’h') .
1/2<1<1 o Js,

Consequently

1 2/n
(2.24) mS?x|Rm(h’)1(1)gcl3(/0 /Sl|Rm|"/2a’h) .

Now from (a, ) it follows that

1
//|Rm|"/2a’h'§2C47:l/2.
0 Js,

Combining this with (2.24) gives

msalem(h’)|(1) < Cy(2C,7 7" < Cy(C ) M

Changing back to the metric /%, we therefore obtain the estimate (c).

To finish the proof of Theorem 2.11, we need only show that there exists
Ca=Cu4H,K,iy,n) >0, such that n > C, > 0. To this end, we
consider the evolution equation for 4,

0
—h = —2Ri .
ath ic(h)
We have [18] as in (2.15),
2/|Rm|n/2dh +/|V|Rm|"/4
ot
Hence, by the Holder inequality,

2
%/|Rm|"/2dh+/]V|Rm|”/4{ dh
l/K 2
< C</|Rm|”"/2dh) (1Rm["2dn)™".

Using (a) and (b), by taking 1/L*" = 2C,C(n)(2C,)"", we obtain

2
dh < C(n) / |Rm [ dh.

0 . 2
a—t/!Rm|"/2a'hSC15(H=K’lo’")/llen/ dh.
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Integrating gives
/]Rm|"/2dh < ecls’/mm )|dh < C,eSr"
and thergfore, if 1< (Cps) 'In3 5, then
(a,) /|Rm|"/2dh <ic,<2c,

We now shall improve the constant in (b). For any fixed fe C °°(S1) , we
have

(7] 2 1 2
E(/Slwﬂ dh+P/f dh)

. 1 2 2
=fSl2R1c(Vf, Vf)dh+P/f (—R(h))dh+/|Vf| (~R) dh

; 1 2
< 6 max | Ric(h /v 2dh+—/ dh).
< 6 max | Ric >|(S|| s+ [ 1 )

Using (c), we obtain

88, (/ V£l dh+L—/fdh>_ lcl/ (f V£ dh+——/fdh)

and therefore, by integration,

(2.25) /S|Vf|2dh+%/sf2dh

ne, 1" ‘ 1 2
< ot /v 2dh+—/ dh
<e (S|| S 7z Slf

n—2 n—2

(2.26) ( /S Lf]7 dh) > e "Cie! ( /S Ifl"_l‘”’dh> " l o

Combining (2.25) and (2.26) with Corollary 2.6, for ¢ < (- C,,In3)", we
then obtain ‘

=0
Similarly,

n—2

(2.27) L—zl/?(/&]f;%dh) " <% [/ P dh + —/fdh}

Now, if
. 1 .3 ((nd) ’
< —InZ -
n_mm{clslnz,( o Ci Cias
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then (c) implies that | Rm(#)| is bounded when ¢ — # . By Theorem 2.10,
(2.9) has a solution on [0, 7] for some 7 > 1, and (2.26) and (2.27) imply
that (a) and (b) are true on [0, #]. Therefore » cannot be maximal. This
contradiction proves that n > C;, > 0, and we can take

T=T(H,K,i,,n =Cp,>0.

This finishes the proof of Theorem 2.11.
Proof of Theorem 2.1. We take h(rp) = h(T) as in Theorem 2.11.
Then Theorem 2.11(c) implies that

C
‘Rm(h)l S C7 for C7 Z (_7:(_:1107_;)_> (C4)2/n > 0'

We now prove that g(rp) and r;h(rp) are equivalent. Recalling that
B(rp) = g(rp)/r; and A(0) = Tz(rp) , we have from Theorem 2.11(c),

CH,K, i, n)

|R1C(h)| < tl_l/n s

and hence for any vector v € T'S,

' 2 hw, v) <2|Ric(h)lh(v,v)5(;%)h(v,v).

Integrating both sides gives

h(T)(v, v) 1/n
oW, v | <"
Since v is arbitrary, by taking C, = ¢"“T" we have

C; 'h(r,) < h < Ch(r,),
which clearly implies that
C7_.lg(r )<r h(r,) < C&(r,).

This finishes the proof of Theorem 2.1.

We need to estimate g(rp) ; by Theorem 2.1, we need only to estimate
h(r p) . We like to use the Gromov Convergence Theorem ([11], {16], [25]);
for this, we have to control the volume and diameter of h(rp) . For the
volume, we have the results of Croke [7].

Theorem 2.28. For r < i;/2, there exists a constant C, = C;(n),
such that

Vol(g(r)) = Vol(S,(xp)) = Cppr"™

Combining this with Theorem 2.1, we obtain the following.
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Corollary 2.29. Forp< %Q , there exists a constant C,g= C o (H ,K , i, n)
> 0 such that
Vol(h(rp)) > C3>0.
For the estimate of diameter, we have

Theorem 2.30. There exists a constant C,g = C\o(H, iy, n) >0, such
that for r < i /2, we have

diam(g(r)) < Cyyr.

We shall postpone the proof of Theorem 2.30 to the next section. For
now, we assume Theorem 2.30. Then from Theorem 2.1, Corollary 2.29,
and Theorem 2.30, we obtain

(2.31) [Rm(h(r))| < C;, Vol(h(r,) > Cig >0, diam(h(r,)) < Cy.

We now can use the Gromov Compactness Theorem ([11], [25]) to es-
timate A(r p), and so g(rp) . These, together with Proposition 1.11 and
Lemma 1.16, clearly imply Theorem D.

3. The diameter estimate of small geodesic sphere

In this section we will prove Theorem 2.30. Most of the proofs are
straightforward, but for completeness we write them here. The main ref-
erences of this section are [14]-[16]. We start with some lemmas.

We define the set of Riemannian manifolds

H(iy, H, n)={(M, g)|linj(g) > i,, Ric(g) >-Hg, dimM = n}.

Lemma 3.1. Let (M,, g;) € #(iy, H, n), and take x; € M,, a point
in M, for each i. Then there exists a compact metric space X such that
M, = Bgl"(xi) C X with D = 4i,, and the distance functions on compact
subspace M, induced from X and the distance function of (M,, g;) are
the same [14], [15].

Lemma 3.2. There exist a compact subspace M 0 of X, and a subse-
quence of {M,} (say {M,}), such that M, converges to M in Hausdorff
distance, which is denoted by M, LM in x.

By passing to a subsequence if necessary, we may assume that x, —
X, € M®in X.

Lemma 3.3. Let B,.O(xo) ={x e M°, d(x, xy) < iy}. Then for any
two points x,y € B, (x,), there exists a minimal geodesic y from x to y

i

in M, ie, L(y) = a?(x, y).
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Proof. By [16], we need only to prove that for any ¢ > 0, there is a
point ze M 0 , such that

max{d(x, z),d(y, z)} < 2 d(x, y) + 4e.

Since M, A, M°, for any ¢ > 0 we have M° C UM, ={x €

X,d(x, M, < ¢} forlarge i, and there exist X,y € M, for large i,

such that d(x, x) <& and d(y, ¥) < €. The triangle inequality implies
dix,y)<d(x,p) +2e, dx,y)<d(x,y)+2e.

Since M, is alength space, clearly d(x, y) < 2i,, and there exists z € Hl.

such that

max{d(x, z) )y <idx,p)+e<id(x,y)+2e

b d(y’
We also have M, C UE(MO) for large i, which implies that there is a

ze M° such that d(z, z) < ¢, and that

dix,z)<d(x,z)+2e < Ld(x,y) +4e,
d(y,z)<d@, z)+2e < 1d(x,y) + 4.

This completes the proof of Lemma 3.3.
Lemma 3.4. For r <i,/2, we have

B.(x) -5 B (x,),

where B,(x;) and B.(x,) are geodesic balls in M; and M, respectively.
Proof. For ¢ > 0, we have B,(x,) C U(M,) for large i. For any
¥, € B,(x,) , there exists y € M;‘ , such that D(y,, y) <&, and hence

d(y, x;) <d(y, ye) +d(yy, Xo) +d(xy, X;)
<e+r+e<r+2

for large i. This implies that y € B, ,,(x,). Since M, is a length space,
there is a y € B (x;), such that d(y, y) < 2¢, and therefore, d(y,, 7) <
3¢ and B,(x,) C Uy, (B,(x;)).

Now for any y € B,(x;), since M c U,(M,) for large i, there exists
ajy,€ M, such that d(y,y, <ée,and

APy, xy) <d(xy, x;)+d(x;, y)+d(y,¥,)) <e+r+e<r+2e

for large i, which implies that y, € B, ,,(x,). If p, ¢ B,(x,), then
d(xy,¥,) > r, and by Lemma 3.3, there is a y, € B,(x,), such that
d(yy, ¥,) < 2¢, and d(y,y,) < 3¢. If y, € B,(x;), we take y, = 7,
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and d(y, y,) < ¢, and hence y € U, (B,(x,)) for large i, and B, (x;) C
U,,(B,(x,)) . This proves that B (x;) A, B,(x,) .

Lemma 3.5. Let S,(x;)={xeM,;, d(x,x)=r} and S,(x,) = {x ¢
M°, d(x, xy) =r}, for r <iy/2. Then

S,(x) 8 (x,) in X.
Proof. (1) We shall show that for any ¢ > 0,
S,(xy) C Uy, (S,(x,)).

Taking any y, € S,(x;), we have d(y,, x;) = r. Lemma 3.4 implies

that B (x,) C U,(B,(x;)) for large i, so there is a y € B,(x,) such that
d(y,,¥) < ¢, and hence
r=d(xy,¥o) Sd(xy, x;) +d(x;, ¥) +d(y, yy) < 2e +d(x;, y)

for large i. This gives d(x;,y) > r — 2¢, and d(x;,y) < r. Since
r < inj(M,), there exists a y € S,(x,), such that d(y, y) < 2¢, and hence
d(y,, y) < 3e. Consequently, S,(x,) C U,,(S,(x;)).

(2) We now are going to show that S (x;) C U,.(S,(x,)) for large i.
We start with the following.

(a) For any y € B,(x,) and d(x,,y) > r — 26, there exists a y, €
S,(x,) , such that d(y, y,) < 26 . In fact, for any y € B (x,) and & > 0,
there is a z € B,(x;) for large 7, such that d(y, z) < &, and therefore

r_25 Sd(x()’ y) Sd(x()a Z)+d(Z’ y)

<d(xy, x)+d(x;, z)+d(y, z)

<2 +d(x;, z)
for large i. This implies that r — 26 — 2¢ < d(x;, z) < r < iy/2, so that
there is a z, € S,(x;), such that d(z, z,) < 26 + 2¢. For such z,, there
exists a y; € B,(x,) such that d(z,, y;) < ¢. We may assume that y; —
Yo €B,.(x,) as £ > 0,and z, —» z as ¢ — 0. Then d(z,, y;) < ¢ implies
that y, = z, and since x; — X, , we have d(x,, z) = limd(x;, 2)¢) =r,
and hence d(x,,y,) =r, ¥, €S,(x,). We have

dy,y,) <d(y,z)+d(z, z) < 8+lirrc1)d(z, z,) <e+20+2e.
£—
Letting ¢ — 0, we then obtain d(y, y,) < 24.

(b) Forany y € S,(x,), d(y, x;) =r, for large i, thereisa 3, € B,(x,)
with d(y, y,) < ¢, such that

r=d(x;,y) <dx;, xy) +d(x,y, Vo) + d(¥5, ¥)
S 28+d(x07 )7())
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for large i. This implies that d(x,, y,) > r — 2¢, and that d(x,, ;) <
r <1i,. By (a), there exists a y, € S,(x,) , such that d(y,, ¥,) < 2¢, and
hence
d(y,yy) <d(y, 7y) +d(¥,, ¥,) < 3e.

Consequently, S,(x;) C U,,(S,(x;)). This finishes the proof of Lemma
3.5.

Lemma 3.6. S,(x,) is connected for r < i,/2.

Proof. Since S,(x;) is connected and compact, so is S,(x,) .

Define PC; = {ala|[t;, t;,,] is a minimal curve with length < J in
M°,and a(t) € S,(x,), 0=t,<t,<---<t, =1, ais C’in M°}.

Lemma3.7. Forany 6 >0 and x,y € S,(x,), thereexistsan a € PC;
such that a(0)=x, a(l)=y :

Proof. Let us fix x, and let

A= {a(l)|a € PCy, a(0) = x}. ;

By Lemma 3.3, 4 is open and closed in S,(x,), and hence 4= S§,(x,).

Theorem 3.8. For r < i,/4, thereis a constant Cyy = Cy(H ,K , iy ,n,r)
> 0, such that diam(S,(x,)) < Cyg.

Proof. Taking ¢ =r/8, we then have for any a € PC;,

0
aCUrM (xo))cMO.
Let y;, z; eSi=S(x<) such that
diam(S,) =d(y;, z, =1nf{L Ny(0) =y;, y(1) = z,}.

Since X is compact, and S; — 8, =S§,(x,) in X, we may assume that
yi—=y,z;—zand y,z€S,.
- Lemma 3.7 implies that there exists an o € PC; such that L(a) < oo,
a(0) = y and «(1) = z. Thus we have «: [0, 1] — M® and 0 = ty <
t, < - < th = 1 such that a|[t s il is minimal in B, (x,) and
a(tj) € S,(x,). By Lemma 3.5, there exists an a S S' , such that for
small ¢ < d and 7 large, a’(a(tj), aj.) <e ao =y,, and ainﬂ = z;.
Therefore

(@, al,) <d@lt), &) +dat), alt),) +dalt,,), &)

<2+d<2<r/2,

which implies that there is a minimal geodesic ,B from & ;1o a I in
M, , such that

B} C Uys(S)) C B, (x,).
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Let B’ = U;."zo Bj’ Then B(0)=y;, B = z;, and B’ is a piecewise
continuous minimal geodesic in ﬁ. . Thus

(3.9) Zd a;,,) < 2me+ L(a) < oo.
j=0

Now note that B; C B, (x;) = B, 5(x;) C M ;. From Proposition 1.11, we
have

8§ =8= dr’ + & (r, x)dx'dx' on B, (x,),

(3.10) e*g(r)) < g(ry) <e*“g(r)

for r/2<r <r,<2r. Let Bj':(t) = (r(1), x(2)) . Then r(z;) = r(tj+1) =r.
Define B, (1) = (r, x(t)) to be the radial projection of B; on S(x;).

Then from (3.10) it follows that
tj+1
dt > /
4

L= |5 at
_ij

r(t)

& x(0

dt J r(t)

1

— J+1 (i
>e 2C3/
4

Taking ,Bi = ,B , where ,B isa C° -piecewise C' curve in 7,
() j r

and L(B') < e2C3L(B) we have f'(0) = y, and B'(1) = z,. By (3.9),
we obtain

dt > EL().

L(B") < (2me + L(a)) < co.

Consequently
diam(S’) < *(2me + L(a)) < oo

for large i. This completes the proof of Theorem 3.8.
Proof of Theorem 2.30. First we claim that

(3.11) diam (g,. <%°)) < C(H, iy, n).
If (3.11) is false, then there exists a sequence
{(M;,g)}CcH#(H, iy, n),

such that diam(g;(i,/4)) — oo, and thus dlam(S i/ 4) — c0. But by Theo-
rem 3.8, there ex1sts a subsequence of {(A,, g,)} (say {(,, g;)}) such
that diam(Slfo /4) < C,y - This contradiction proves (3.11).
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Let g = (1/12)gi forany r <i,/4 and 7 =4r/i,. Thensince 1< 1,

we have
Ric(g )> Hg, 1n_](g)>10,

thatis, (M,, g) € #(H, iy, n). Applying (3.11) to (M;, g!), we obtain
diam (g,' (%)) < C(H, iy, n)

diam(g,(r)) < C(H, iy, n)?.
0

which implies
Hence the theorem is proved.

4. L’-curvature pinching estimates
Let M be a compact Riemannian manifold with metric g as in the
above sections, and assume that
Ric(g) > ~Hg,  inj(g)>1i,>0,

(4.) max |IRm(g)|"*dg > K,

XM B, (%)

where H > 0. In this section, we make the following additional hypothe-
sis.
Assumption 4.2. Let
T'm = Tijkl = Rijk[ - A(gijgj[ - gi[gjk)’

with A=1,0, or —1, and assume that

max ]Tm|2 dg<u
%€M JB, (%)

for a small 4 > 0.
As in earlier sections, we consider the metric g in polar geodesic coor-
dinates on the geodesic ball Bio(xo) ,

g=dr+ Zgij(r, X) dxidxj.

Let g(f) be the induced metric on the geodesic sphere S,(x,) . Denote the
(¢}

scalar curvature free curvature tensor of g(r) by Rm(r = R m(g(r)),

and the second fundamental form of S,(x,) by B(X, Y)=(V,Y, 8/0r)

for X, Y vector fields on S (Xg) -
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The main theorem of this section is:
Theorem 4.3. Let o(u) = u'/"V . Then for any Xg €M and p =
io/4, thereis an x € B (x,) C M, such that
o _ _ 1/2 .
/ 1Rm(2)|dz < o(w)*C(H, K, iy, n).
()= B, 5(x)

Remark 4.3(a). Similarly, if 0 <7 < {;/4, thereexistsan x € B_(x;) C
M such that

[ IRm(@)ldg <o CH. K. ig n, 1.
1o ja(X)}— By (x)

We start with several lemmas,
Lemma 44. Let y be a geodesic of length | < n/2, and J a vector
field along vy, such that J(y(0)) =0 and J(y(I))=0. Thenfor A=1,0,

or —1, we have
! 2 ! 1,2 ! 2
/ ] dts/ 7| dt—A/ P dt.
0 0 0

Proof Since the Dirichlet eigenvalue problem of the Laplace operator
—d? /d £ on [0, I] has the first eigenvalue (z /l > 4, we have

/\J|62 A/ Vi >4/ ] —A/ 1] >/|J|

Lemma 4.5. Let y and J be as in Lemma 4.4. Then

! 12 ! 1,2 ! 2
/OIJI dzsz(/o 7] dt—A/O |J( dt).

Proof. We have
! !l ) )
/|J'|2dt=/ |J'|2dt—A/ |J|2dt+A/ I dt
0 0 0 0
! 1,2 ! 2
<2 /|J| dt—A/ \J2dz).
0 0

Lemma 4.6. Let y be a geodesic of length | < iy/4 < =/2, and Y
a Jacobi field along y such that Y(y(0)) = 0, |[Y(y{(I))] =1, and Y
is perpendicular to y. Let E be the parallel vector field along y with
EG() = Y(y(1)), and define
— (sin¢/sin)E ifa=1,
A={ Y-(t/DE ifA=0,
— (sinht/sinhl)E ifA=-1.
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!
/ AP dr < c20/|T,,~,|.
0 b4

Proof. Wehave Y’ + R(Y, y")y' =0, which can be rewritten as
Y'+AY = —(R(Y, )y -AY),

Then

so that
A" +AA=Y +AY = —(R(Y, )y — AY).

Noting that (R(Y, y')y’ — AY) <|T,,||Y], we deduce

(4.7) |4" + A4 <|T, ||Y].

Since |Y (/)] =1, Lemma 1.17 implies that |Y| < C,(H, i,, n) so that
| < Y|+ |E| < Cg+ L.

Combining this with (4.7) gives

! 1,2 ! 2 ! 17
/{Al —A/ 1] =—/(A +AA, A)dt
0 0 0
, |
2 -
_<_/0 IT,|1Y]14] < (Ca+ 1) /le|. |
7

Thus using Lemmas 4.4 and 4.5, we thus prove Lemma 4.6.
Lemma 4.8. Let y,Y, and A be as in Lemma 4.6, and assume
iy/100 <1< i,/4. Then

2 2
APOW) <Gy [ 1T,
?
Jor a constant C,; = C, (H, K, i;, n)>0.
Proof. Let y be a function on y, such that w(¢) =0 for ¢ < /8,
w(t)=1 for t>71/8, 0<w <1,and |¥'| <10/].
Integrating by parts yields
I I
wa’|=/ |(a//A')'ldt=/ A"+ 4 dt
0 0
! I I 10 l I}
< [1-aa- @,y -anj+ 3 [ 14140
0 0

10 f! '
<7 [+ 1dpder 11,71
0 b4

By the Holder inequality and Lemma 4.6, we obtain

10wy < (F) 17 ( [ |A|2) Cac (fmr) 3
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so that
AP 6 <Gy, [T,
b4

Remark 4.8(a). By taking ¢ = 1 on [F, {;/4] in the proof, we can
show that, for any 0 < 7 < i,/4, we have

2
r<m<ax/ |A| (yn) < CH,K,iy,n,F /y|Tm| .

Lemma 4.9. Foreach x € M, let y be the geodesic in M, and y(0) =
x with the length | of y satisfying i /8 <1< i,/4. Then at y(I),

1B bR G0) < Gy [ 1T,

Jor a constant céz =Cp(H, K, iy, n) >0, where
—cos!//sin/ ifA=1,
bl)=<¢ —1/1 zfA=(),
—coshl/sinhl ifA=—
and B and g are the second funa’amental Jorm and induced metric on
S.(x), respectively.
Proof. Let X, Y be vector fields on §,(x), such that lX(y(l))| =1
~and |Y(y(I))| = 1, and let E, E be parallel vector fields on y, with
E(y()) = X(y(1)) and E(y()) = Y(y(I)) . We can extend X, Y to vector
fields on B(x), such that X, Y are Jacobi fields on each radial geodesic
from x. Then clearly, we have
B(X, Y)(y()) = —(V, X, Y)(»(])).
From Lemma 4.8, it follows that
IB(X, ¥) = b(){X, V) (7(1) = (X, ¥) + bUNE, V)" ()

= (X' + B)E), V) < CZIIYI/lemlz

2
< C6C21/y|Tm| .

Since this holds for any such vector field X, Y on S (x), clearly this
implies that

1B~ b(D)g]*(»(1) < Cyy / T,
Y
which finishes the proof of Lemma 4.9.

We now define a function f on M x Mn{(x,y):d(x,y) < i/2}.
For each (x,y) € M x M with d(x,y) < i,/2, there exists a unique
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geodesic y from x to y in M with length 2/, and / < i /4, y(0)=x,
7(2l) = y. Let B (I) and g (/) be the second fundamental form and
induced metric on S,(x), respectively. Then we define

fx,y)=B,() = b(Dg, (D] (D).

Lemma 4.10. Let x, € M, and for small 1 >0 >0, By(x,) = {x €
M:d(x,, x) < d}. Thenthere exists aconstant Cyy = Cy5(H, K, iy, n) >
0, such that for 1,/8 <[ < i /4, we have

/B )(/ fix,y)dg. )) dg(x) < Cpyu.

Proof. Let Q =, B,(x;) ) Sy(x) Cc M. We consider the distance func-
tion d on Bg(x,) x M. Smce 21 < iy/2, 21 is a regular value of d,

¥ =d7' (2D = Usepy ) (X5 Su(%))

is a smooth submanifold of M x M with dimX = 2n — 1. Let us denote
the (2n — 1)-dimensional Haussdorff measure of M x M by dv. We use
the coarea formula [8] to compute [ f; f(x, y)dv . On the one hand, we

have
/ / flx, y)dv = / ( f(x,y)dgx(y)) dg(x).
Bj(x,) Sy (x)

On the other hand, for each y € Q, we set Q = B;(x,) NS, (y) ={x €
By(x,),d(x, y) =2l}. Then Q,C S8, and

//Ef(X,y)du=/ﬂ( ny(x,y)dgy(x)) dg(y)

< /Q ( SZ{(y)f(x,y)dg’y(X)> dg(y).

Now for each y € Q and x € §,,(y), we denote the geodesic from x to
y(I) by 7, 1e., 7(t) = y(t) for ¢t <I. Using Lemma 4.9, we obtain

Su) T, 748,00 < G /sz,m </y lelz) dg,(x),

where f? |Tm|2 is considered as a function of x and y with d(x, y) =
2/, and hence

2/
166, »)dg, () < C,, [ (/S

2[(.V)

(4.11)

| Tm)*(3(21 - 1) dg;(x)) dt

Sy (»)
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From Proposition 1.11, we have dg (y(2/ 1)) > C(Y, iy, n)dg,(x),
x € S,,(y), which implies

£x,¥)d8,(0) < CUH L K, ig, m) [ TmP dg
Bz[(J’)*B[(y)

<CH. K. iy, n)/ \Tmfdg < Cp.
Bz[(y)

Sz[(.V)

Combining this with (4.11), we obtain

/ / Flx, ) dv < CuVol(Q).
>

Note that Q C B;_,,(x,) C B(5+z'0(x0) and Ric > —H . From Lemma 1.15,
it then follows that

/ ( f(x,y)dgx(y)) dg(x) < Cyp.
B (x,) 8y(x)

Lemma 4.12. For i/8<1<1i,/4, 1>6>0, we have

— 2,

Jor a constant C,, = C,,(H, K, i,,n)>0.
Proof. From Lemma 4.10, it follows that

— 2 L, _
/BM ( [S B0 = b0z dgx(y)> dg(x) < Cpi.

By Proposition 1.11, the metrics g (/) and g (2/) on S§;(x) and S,(x)
respectively are equivalent. We thus obtain Lemma 4.12.

Remark 4.12(a). If we replace 4.8 by 4.8(a) in the proof above, we can
show that for any 0 < 7 < i0/4 R

max B_(r)-b(r)z, (N dz dg(x
L (@SW [ 1Bt b o) gx(y>) 8(x)
SC(H,K,iO,n,'_')ﬂ.

We now can prove Theorem 4.3.

Proof of Theorem 4.3. For J > 0 small, by Theorem 2.28 we obtain
Vol(B;(x,)) > C(H, iy, n)6" . Then Lemma 4.12 implies that there is an
X € By(x,) , such that

| B = bz ()7 dg < CUH, K g, mp”
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6n+1 (el

Taking =pu>0,and g(u)=u =d> 0, we have

@y [ B0 -0 (0P dg < Co),  forx € B(x),

and lim, ,0(u)=0.
Now let us recall the Gauss formula on §,(x),

R(8);jx1 = R(8);jy + (ByB;; — B, B,).
We will estimate

/ ) [Rm(@) (8 +00)(88;~ 88,0 42
1 X

First, noting that g(9/0x’, 8/9x’) = g; = g,; and g(d/dr,d/dx") =0,
we have

IR(g)ijk] - A(g,-kgjl - gi/gjk)l <|Tm| on S,(x),

and hence
_ 2

@[ IR Mgy 2ug)l s S

I4 p/2
Secondly, (4.13) implies that

[ 1B0Pdg <tk iy m,
S,()C)

so that

2 =
/ IBikle_b(l) g,-kgj,ldg
S/(x)

_ /S( 188y~ b(1g;) + b(DZ; By ~ b2l d2

—c [ iBlB-bgldg+C [ 1B-b(hglde.
S/(x) S/(x)
By the Holder inequality, we thus obtain’

| 1BuB, - b0 8,8, de
S/(x)

and hence

_ _ _ . 2
/S ( )|(B,-kB,-,—B,.,B,-k>—b(l)%gikgj,—g,.,gjk)ldg <CH, K, iy, mo(u)'.
,)C
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Combining this with the Holder inequality and (4.14) yields

(4.15) /B (X)= B ) IR(E) 5 = (A b)) (@581~ 22yl A8

<Cow)'?+cu? < CH K, iy, mo(w)'*

for u < 1.If R denotes the scalar curvature of g(r), then
/ 7= (n = 1)(n - 2)(A+ b)) dg < Catu)'™.
BP(X)_BP/z(x)
Combining this with (4.15), we thus obtain

[e]
(4.16) / IRm(g)|dg
B,,(X)_Bp/z(x)

/B,,(x>—B,,,2(x>

<C(H, K, iy, n)a(u)'?,

_ R o
R(8)iju — m(gikgﬂ - 8i8) dg

which completes the proof of Theorem 4.3.
As a corollary of Theorem 4.3, we have
Corollary 4.17. For the metric g on M, if
(a) Ric(g) > -Hg,
(b) inj(g) 2 i, >0,

(c)
max |Rm|"/2dg_<_H,
xeM Bio(x)

(d)
max \TmPdg<u<l,
xeM Bio(x)

then there exist a a(y) > 0, lim#_,oa(,u) = 0, and a constant C,; =
C,s(H, iy, n) > 0, such that for any x, € M and p = i,/4, there is an
x€B,(x)) €M, andan r, >0, p/2§r/J <p,and

/S ( )lﬁm(g)ldg < Cyio(n).

Proof. First (¢) and Lemma 1.15 imply that

max [ |Rm(g)|""

dg < C(H, iy, n),
xeM Bio(x) ( 0
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so that K < C(H, iy, n). Theorem 2.28 yields that Vol(B, — Bp/z) >
C(H, iy, n) > 0. These and Theorem 4.3 thus immediately prove Corol-
lary 4.17. Remark 4.3(a) follows from Remark 4.8(a) above.

5. L"’_curvature pinching theorems

In this section we shall prove the main theorems of this paper. We refer
to the L"*-curvature pinching theorems.

Theorem 5.1. For each H >0 and 0 < i, < n/2, there exists a small
u = u(H, iy, n) >0 which depends only on H, iy, and n, such that if
(M, g) is a complete Riemannian manifold with dimM =n > 4, and

(a) Ric(g) > —Hg,

(b) inj(g) > iy,

(c)

|n/2

max |IRm(g)|"""dg < H,
)

XEM Bio(x
(d)

%"‘}‘}} 5,00 IR(g)Ukl - (gikgj~1 - gjlgjk)lz dg<u,

then M is homotopic to a Riemannian manifold M with positive con-
stant sectional curvature, in particular, M is compact. Furthermore, M is
covered by a homeomorphism sphere.

Theorem 5.2. Foreach H>0, d >0, and 0> i, < n/2, there exists
asmall p=u(H, iy, n,d) >0 which depends only on H, i,, n and d,
such that if (M, g) is a compact Riemannian manifold with dimM =
n>4,and

(a) Ric(g) > -Hg,

(b) inj(g) =2 i, > 0,

(c)
max [ |Rm(g)"*dg < H,
xeM Bio(x)
(d)
2
gcneaj'\)l{ Bio(x) |R(g)Uk1 A(glkgjl gllgjk)l dg = u’

(e) diam(g)<d,
then M is homotopic to a manifold with constant sectional curvature A =
-1 or 0.
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We shall prove Theorems 5.1 and 5.2 together. Condition (¢) can be
rewritten as
(5.3) max |Tm|2 dg < u.

xeEM B‘o (x)

We first start with the following.

Theorem 5.4. Let (M, , g ) be a sequence of Riemannian manifolds,
such that

(a) Ric(gk) >-—-Hg,,

(b) inj(g,) 2 i, > 0,

(c)

a R "de <H,
max B,o<x>l m(g,)| " dg <
(d)
2
My | Tm(g)| dg, < & = 1.
L]

Then there is a subsequence of (M, , g,) which converges to a complete
Riemannian manifold M of constant sectional curvature A in Haussdorff
distance.

Proof. We take a point x, € M, , for each k. Then the precompact-
ness theorem of Gromov [16] implies that there exists a subsequence of
(M, g.) (for simplicity, say this subsequence is (M, , g, )) which con-
verges to a length space M . We claim that M is a Riemannian manifold
of constant curvature A. Let us denote the (n — 1)-dimensional standard
Euclidean unit sphere by S, .

Let

(M, x;) A, x).

We denote the ball of radius » in M, at x, by B,(x,), and the sphere
of radius r in M, at x, by S (x,). Similarly, we have the ball B (%)
and sphere S, (X) in M . For any large D > 0, there is a compact metric
space X , such that B(x,) is a subspace of X with induced metric,
and also Bp(X) C X. We have x, — X in X. From §3, for r < {,/2
7€ M,and d(x, 7 < D, we have S, (%) f, S,(7) in X for a sequence
X, € Bp(x,),and X, — 7 in X.

Let d6” denote the standard metric of constant sectional curvature on

S, , and ,
sin®rd6®  ifA=1,
g(r) =s(r)?do* ={ r*de? ifA=0,
sinh’rd6® ifA=-1.
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Lemma 5.5. For y € M and any 0 <F < iy/4, there exists a y, € M,
with d(x,,y,) < a(1/k), such that for each r € [F, iy/4], and for g, =
ar* + 8.(r) on Bio/4(yk) there is a diffeomorphism ¢,: S, — S| such that
(¢, may depend on r)

IQS;gk(r) -~ g(r)lg(r) —0 onS,.

First we need the following.

Sublemma 5.6. There exists y, € M, with d(X,,y,) < a(1/k) such
that for any r € [F, iy/4] and any & > O, thereisan r, >0, r <r, <
or +r, and a diffeomorphism ¢,: S, — S, for each k, such that

|¢]:gk(rk) h lg(r)

hs = (l/x(s)a’B2 Jor some k5 > 0.
Proof. Let us recall from Theorem 1.14, Remark 1.14(a) for any x €
M, , and from Theorem 4.3, Remark 4.3(a) respectively:

10/4 n .
[F [S \Rm(z,)["? dg)kdr < C(H, iy, n, P):

[, 8
S,(ve)

iy/4
L7 Rm@) — 0k o088~ 248,01 dBe dr

S C(H’ iO’ n, r)a(luk)'

Since y, — § in X, we also have S,(y,) — S,(¥) in X foreach r <iy/4.
Now taking r € [F, i,/4] and J > 0 small, we have

dgkdr<C(H lo,n r) (uk)’

or

+1)r u2
s [ IRm(@"dgdr< C(H, g n, 1),
r S,(ve)
G+1)r o
o [ | Rm@o] dgears cut,ig, n, noti/b),
r 484
(6+1)r
. /S IRm(g,) — (A+ ()88 — 242,01 43, dr
()

S C(H’ 10’ n’ r) (]‘/k)'
Note that (5.8)(a) is a consequence of (5.8)(b).

(5.8)(b
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We define the subsets Alf and A;‘ of [r, (6 + 1)r] by

n — s Y
Alf={pE[r>(5+1)’];/S(y)|Rm(§k)| ﬂdngC(H”o’”’r)g;}’
p\k

A5 ={p6[r,(6+1)r]:/8( )lRm(gk)—(4+b(p)2)(2,~,~g,-,—gj,gj,,)ldgk
oYk

54C(H,z'0,n,r)"(51£k)}.

Then from (5.7) and (5.8), it follows that for each k,
m(A) > L6r and m(45) > Lor,

where m(Alf) is the Lebesgue measure of Alf . These clearly imply that
there exists an r, € Allc ﬁAé‘ , for each &, such that r <r, < (6 +1)r and

(5.9) / \Rm(g,)["* dg, < C(H, iy, n, 7, ),
Sr (yk

(5.10)(a) / lﬁm(gk)} dg, <C(H,iy,n,F,d)0 (%) ,
Sk(yk)

o) IRm(2,) — (A +b(k))(2,,8;1 — 72;)| A2,
(5.10)(b) T

. _ I
<C(H,iy,n,F,o)o (E)

Notation. We shall write S(k) = Srk (v,) (alsoidentify S(k) with §,),
and simply write S as S; = S(k). For r <i,/2, we also identify S,(y,)
with S.

We now consider the evolution equation on Srk (V) =S:

9
at
such that 4, (0) = g,(r,). We apply Theorem 2.11 to g,(r,), and note
from (5.9) and Theorem 5.4(c) that there existsa T'=T(H , iy, n, F, ) >
0 such that (5.11) has a solution on [0, 7], and

CH,i,n,F
62/nt1—1/n

(5.11) h, = —2Ric(h,)

m§1X|Rm(hk)|(t) <
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From [19] and [20] it is a straightforward but long calculation to show
019 o ¢}

(5.12) - 1 Rm(hk)| < A\ Rm(hk)l +C(n) ‘ Rm(hk)‘ IR, ().

Then for each‘ﬁxed 7, 0<t<T,andall k& we have

az/'R

Integrating both side yields
Q [¢]
R @)ty < CCtigumo 60" [ | R, (80)] d
s

Combining this with (5. 10), and noting that n > 4, we obtain

w(BO| 1R, ()]

< C(H, 10, n, r,d)/
- tl—l/n s

Q
R, (k)| dh,.

(5.13) R dhk(t) < C(H, i), n, F, )t "a(1/k)*".
0

From §2, we also have
Vol(h, (t)) > C(H , iy, n,F) >0 fort<é”,

(5.14) ,
diam(h, (7)) < C(H, iy, n) forr<d".

Since |R,,(h, (7/2))] < C/rl_l/" , using a smoothing theorem in [1] we
find

|VR,,(h (7))| < max|Rm (hk (I))‘ Cn) C(H,;§:17n, F,0)

2

For each fixed 0 < 7 < min{7, 62} , by the Gromov Convergence Theo-
rem ([15], [25]), a subsequence of (S(k), &, (7)) converges to a C? Rie-
mannian manifold (S, 4(z)); we still call this subsequence (S(k), A, (7)).
(5.13) implies that R m(A(z)) = 0, and hence A(7) is a constant curvature
metric on S.

From §2 again, we have

— . _ 1
(5.15) 18 (r) = by (Dl < CH i, m, 7, )7
Recalling the Gromov Convergence Theorem ([11], [25]), we see that there

exists a diffeomorphism ¢,: S — § for each k, such that ¢, 4, (1) con-

verges to a constant curvature metric 4(7) on S in C? -topology, so that
for large k,

(5.16) 618, (r,) = h(x)| < C(H , iy, n, F, 8)"".
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From (5.14), the constant curvature K(t) of A(1) on S satisfies
0<C(H,iy,n,)<K(T)<CH, iy, n,7) fort<d
which shows that there exists a subsequence {7} such that 7, — 0,

2

the sectional curvature K(t,) — k;, and h(t)) N hs, where hj is a
constant curvature metric on § with K(h;) = k;. Then (5.16) implies
that
(5.17) |68 (re) = hsly, = 0,
and that ¢, (g,(r,) converges uniformly to /; on S.

We also have 0 < C(H,i,,n,F) < k; < C(H, iy,n,r) and h; =
(1/x;)d 6” . This completes the proof of Sublemma 5.6.

We may take a subsequence {d, } of {d},suchthat §, — 0 and x; —
k > 0. We have

0<C(H, iy, n,P)d0’ <h, <C(H, iy, n,r)do".

Sublemma 5.18. There exists a subsequence of {$,8,(r)} and h(r) =

(1/x)d@*, such that for this subsequence

|68, (1) = h(P)l, =0 on S,

i.e., such a subsequence converges uniformly to h(r) on S.
Proof. Note that s; — h uniformly on §. For any given & >0, we
have for a small J, >0,

(5.19) lhs = hl, <.

For simplicity, we rewrite g, (r) as ¢,g,(r), consider that ¢, is fixed,
and use ¢, to define a new polar coordinate on S(k), i.e., we compose
¢, with x’s of polar coordinate {r, x'}. Then in the new coordinate,
qSng(s) changes to g, (s) for all s < i,/2. From Proposition 1.11, we

dr< C(H, iy, n),

have ‘
ig/4 )
/ r
0 2

1 [T
drg—/ ¥
& r'Jr

2

which implies
rk a

9
ar Sk
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We also take 6, > 0 small such that
C(H, iy, n, Flr, —r]l/2 <e,
and fix such J,. For k large, from (5.17) we have
|8 (r) = hs 1y < Cl& (1) — h5a|h% <e

This implies that |g,(r,) — A|, < 2¢ for large k, and that the g,(r,) are
equivalent to 4 for large k, so that

/rka- dr<C(H, i -)/rka- d
— r LI, N, F — r
. |ar®k], 4= 0 . |0rBk,
<Clr, — r[l/2 <

and therefore

_ _ el o _

ng(rk)“'gk(r)lh S/ ng <é&.

r h

From this and (5.19), one has
lgk(r) - hlh < 38:

which proves Sublemma 5.18.
Remark 5.18(a). For each r €[F, i)/4], we have

0< C(H, iy, n,d0* <h(r)< C(H, iy, n, ) do".
Sublemma 5.20. We can choose ¢,(r), such that

S(r)2
h(r) = h
(r) (S(p)z) (»)

Jor relr, i,/4] and p =iy/8.
Proof. Now we take p =i,/8; then

|¢ng(l)) - h(p)|h(p) - 0,

where each ¢, depends on g,(p). For each k, we use ¢, to define a
polar coordinate on B, (), and write g, (r) as #,.8,(r) forall r <ij /4.
First we have

0<C(H, iy, n,F)d6> < g (r) < C(H, iy, n, F)ds".
Secondly, from Lemma 4.12 and Remark 4.12(a), noting that B, (r) =

_%%gk(’) , we obtain

2
max /
F<r<iy/4 5,(,)

o , 1
578 (r) + 2b(r)g,.(r) . dg, < C(H, iy, n,Fo (E) )
k
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(Clearly, we can choose y, , such that this and (5.8) are satisfied.) From
this it follows that

/ 7]
S,(%)

2

8, (1) + 2b(r)g, (1)

do<C(H, iy, n,Fo (l) ,

462 k

where d@ is the volume element of (S|, d 92) . Now let

2
han=ggn—(s“))hmx

S(p)?
where
sinr ifA=1,
Sry=3r ifA=0,
sinar if A= -1.
We have

or ar
If we now integrate over r € [F, i;/4], we then obtain

_3_ (e_z frp bmd’h,((r)) _ e_z frﬂb(r)dr (igk + 2b(r)gk) .

2 {? b(rydr /4
qzﬂ“”han—mmﬂsc/ 578N + 26018 (1)) dr
| g 5 1/2
<C (/r ng +2b(r)g, dr) )
that is,
2 i /4 2
L ) o) sC [T 2 w2808, o

By integrating over S, , we deduce

J

and thus

2 i /4 2
e—Zﬂ”b(r)drhk(r) ~ h(p)| dO< C/ o / ‘g;gk +2b(r)g,| dbdr
F N

<C(H, iy, n, o (%) ,

[l do < ¢ [k do+co(3).
S S
Noting that |k, (p)| = |2,(p) — h(p)| — 0, we then obtain

(5.19)(a) /S|hk(r)|2 46— 0
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and for each r € [7, ij/4], g.(r) converges to (S(r)z/S(p)z)h(p) almost
everywhere. On the other hand, g (r) converges uniformly to 4(r) (up
to diffeomorphisms). We have

S 2
Vol(h(r)) = Vol ((S((/’)))2) h(p)) :

This clearly implies
S(r)z)
h = ==<_1h ,
(r) ((S(p)2 (p)

and proves Sublemma 5.20.

Sublemma 5.21.  A(r) = S(r)’ d6* for re[F, i,/4].

Proof. All we need is to show that for one r € [F, iy/4], h(r) =
S(r?de*. '

To this end, we consider the evolution equation again:

8 .
-l = —2Ric(l),

where £, (0) = g,(r,) , and where we take r = {,/8 and r, asin Sublemma
5.6 for 6 = 1. We have

|¢;gk(rk) - h1| — 0.
Now recalling (5.10)(b), we find
_ 1
uLR@MQ»—W—UW—m(an)

If we denote the scalar curvature of 4, by R(h,), we have

(n=1n-2) 1
(5.22) /y __S—(;‘:)Z—l dh (0) < Co (k> .

We also have from (5.10)(a) and Theorem 2.11,

_ . _ 1
dg, <C(H,i,,n,Fo (E)

R(hy)(0) —

/SlRm(hk)l"/2 dhk < C(H., iy, n,7)

for 0<t<T=T(H,iy,n,F).
Note that

%R(hk) — AR(h) + 2| Ric(hy)[*,
and that s
a /R(hk)dhk - /(2|Ric(hk)]2 ~R(h)?) dh,.
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Then

3] . .
E/R(hk)dhk <CH, iy n,7),

which implies that

/R(hk)dh)k—/R(gk)(rk) <CH. iy n, .

Combining this with (5.22) gives

/R(hk)dhk _ E”;Sl(iﬁ’;—‘z—)
k

Passing to a subsequence if necessary, we may assume that r, — R,
i,/8 <1y < iy/4. Noting that

Vol(g, (n )| < C(H, iy, n, F)it+Cao <%) .

| Vol(g, (r,) — Vol(h,)| < C(H , iy, n, I)i'!",

we then have

(n=Dn=2) Vol(h,)| < €1/ + Co (l) :

Taking a subsequence, and then letting k& — oo, keeping in mind that such
a subsequence converges to 4, in Cz-topology, we obtain

(n—1)(n-2)
s(r)

I/n

Vol(h,)| < c1''™.

/R(hl)dhl -

We observe that 2 — 1 is a constant sectional curvature metric on S, and
h (1) = (1/x,(t))d6*, so that

Kl(t) — ;

s(ro)2

Letting ¢ — 0, we have A (f) — s(ro)2 d6” . As in the proof of Sublemma
5.6, this implies that

< cr'’”,

658, (ry) — S(ry)* d6%| — 0,

and therefore A(r)) = s(r0)2 d6* . Hence Sublemma 5.21 is proved.

Now we are ready to prove Lemma 3.5.

Proof of Lemma 5.5. From Sublemma 5.6 through Sublemma 5.21,
there exists a subsequence of {g,} which converges to g(r) = A(r) =
s(r)2 de* for all r € [F, i,/4]. We can apply this to any subsequence
of a subsequence of {g,}, which all have the same limit. This clearly
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implies that the sequence {g,} itself converges to g(r) = s(r)2 do* for
each r €7, iy/4], ie.,

(5.23) |¢;gk(r) - g(r),g(r) —0 onlS,
which proves Lemma 5.5.
Since we can take any 7 (0 < ¥ < i,/4), as an immediate consequence,

we have the following.
Corollary 5.24. For any y € M, we have

S,(7)=(S,, g(r) = (S,, s(r)* d6?),

r

O0<r<i,/4.

Estimate (5.19)(a) also gives the following.

Corollary 5.25. Let y € M, and y, € M, as above. For a proper
choice of polar coordinate on B,.0 (¥,), we have

[ 120)— ()3 dsr) ~ 0

uniformly for r € [F, iy/4]. In particular g, (r) converges to g(r) almost
everywhere for each r €[, iy/4].
Proof. Corollary 5.25 follows from (5.19)(a) and Sublemma 5.21.
Corollary 5.24 says that any metric sphere S,(7) of M for 0 < r < i,/4
is the Euclidean sphere (S|, g(r)), which almost implies that B,.0 /4()7)

is isometric to (Bl.0/4(0), g), where B (0) = {x € R", |x| < r} and
g = dr* + s(r)2 d6® , l.e, B, /4()7) is isometric to the geodesic ball of
radius i,/4 in the constant sectional curvature space form. The next few
paragraphs are devoted to the proof of this fact.

Lemma 5.26. Let y € M and y, € M, be as above. Let ¢,: S, — S,
be as in Lemma 5.5 for each fixed r € [F, i,/4]. Then we have

|¢;gk(r) - g(r)lg(,) -0 on Sl-
If d denotes the distance function of (S, , g(r)). then for any p, q € S,
d($,(p)> b:(9) — d(p.q) and d(¢;' (D), ¢ (@) —d(D, 9.
Here we agree to take the proper polar coordinate on B[.0 (V) such that
18, (P) — 8(P)l,,y = O onS, p=iy/8.
Proof. From Corollary 5.235,

(5.27) /S 12,(1) - &) dg(r) - 0
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uniformly for r € [F, i,/4]. Note that

0< C(H, iy, n)g(p) < g(p) < C(H, iy, n)g(p).
This and Proposition 1.11 imply
(5.28) 0< C(H,iy,n,F)d0’ <g(r)<C(H, i, n,r)db.
From this, we have o
(5.29) Dy +|Dg; | < C(H iy, n, 7)

where D¢, is the tangential map of ¢,, the pointwise norm |D¢,| is
taken with respect to any one of d 6%, g(r) or g.(r).
Now (5.27), (5.28), and (5.29) imply
[ 1680 - s az(r)
x_ 2 * _ 2
<c /S (618) = 412l de(r)+ € [ 16,8,0) — 2) de(r)

<C(H, iy, n,7) /S 12(r) - g(r)Fdg+C /S 18(r) — $g ([ dg,

and therefore

(530) [ 1#a0) - P der) —
Similarly
[ 18" 8- s dz(r)

SC/Slaﬁkl*g r —g’k(r)lzdg(r)+C/Sl<§’k(r)—g(r)|2dg

<C(H, iy, n,7) /S 18(r) - dLg, () dg +C /S 12.(r) ~ g (NP dg
and thus
(5.31) /| 67" 8(r) - g(r)} dg — 0.

Clearly, Lemma 5.26 will follow from the following.
Sublemma 5.32. Let ¢,: S, — S, be a diffeomorphism, such that

/|¢kg NPdg—0 ons,,

|D¢k|+|D¢; |SC(H5 io: naf)'
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0
If¢ki>¢ on S, then forany p,q € S,, we have

d(o(p), ¢(q)) <d(p, ).

Proof. Let h, = ¢;g(r). Then £, converges to g(r) almost every-
where on S .

Let y be the minimal geodesic from p to g in (S, g(r)). We have
the formula for the length L(y) of y:

L(y)=4d(p, q).

Given ¢ > 0, we take two totally geodesic discs D and D' in the sphere
(S, g(r)) through p and ¢ with center p and ¢ and the same radius <e¢,
which are perpendicular to y. It is obvious that there are parallel geodesics
connecting each point of D to the corresponding point of D'. These
geodesics define a cylinder X in §; with axis y. Clearly, Vol(Z) > 0,
and A, — g(r) almost everywhere on X, and the Fubini Theorem implies
that there is a parallel geodesic ' in Z, such that h, — g(r), almost
everywhere on 7. In fact, we have

/ I, ~ g — 0.
yf

Note that -
LY <L) +e<dp, q) +e.
Now #; — g(r) on ' implies that for large &,
L) <L(») +e<d(p,q)+2e,

where L, (y) is the length of ' in (S,, 4;), and hence
L(¢(7) <d(p, q) + 2,
d($.(7'(0)), ¢ (Y (1)) < d(p, a) + 2.
Since d(p, 7'(0) < & and d(q, y'(1)) < &, we have
d(¢y(p), $(7(0) < Ce,  d($(a), $(¥' (1)) < Ce.
Therefore, the triangle inequality gives
d(¢ (D), (@) <d(p, q) + 26 + 2Ce.
Letting & — oo, we thus obtain

d(¢(p), ¢(q)) <d(p, q) + 2¢ + 2Ce.

Since ¢ is arbitrary and C is independent of &, this proves Sublemma
5.32.



L"2.CURVATURE PINCHING 761

Now we can finish the proof of Lemma 5.26. We apply Sublemma 5.32
to any subsequence of {¢,} and {q&,:l}.

For if ¢ is a limit of any subsequence of {¢, }, then qﬁ_l is also a limit
of a subsequence of {q&;l} . We have

d(¢(p), ¢(q)) <d(p, q),
dp,q)=d(¢™'¢), ¢~ ¢(a) < d(¢(D), $(2)).

Hence

dp,q) =d(o(p), $(4))-

Since all of them have the same limit d(p, q), this clearly implies Lemma
5.26.

Remark 5.33. If d(r) denotes the distance function for g(r), then we
clearly have

d(r)(¢(p), ¢,(q)) = d(r)p, q) forall0<r<iy/4

(since g(r) are constant multiples of each other). Note that ¢, depends
on r €[F, i,/4].

Corollary 5.34. For a fixed r € [F, iy/4], let d, denote the distance
Sunction of (S, g,(r)). Then forany p,qe S,

lim d,(p.q)=d(p, ).
Proof. First we have |¢; g8, (r) — g(r)|g — 0 on §, and hence
18, (r) — ¢;l*g(r)|g — 0 on S, . Therefore,
40, @)~ dp, )| < ld,(p, @) —d(g; (), & (@)

+1d(¢; ' (p), 67 (@) -d(p, q)| = 0,

which finishes the proof of Corollary 5.34.
Now we want to prove a similar fact for the metrics g, = d r+ 8 (r)

on B, ,,(v;) = By (¥y) -
Lemma 5.35. If d, and d denote the distance function of g, and g =

dr2+g(r) , then forany p, q € Bio/4(yk) -B,(y,)=Q, and d(p, q) <F,
Jim di(p, q)=d(p, q).
First, for any ¢,: S — S as above and r € [F, i;/4], we have

|68 (r) — &(7)| g,y = O on S
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We define diffeomorphisms w,(r): Q, — Q, by w, (r)(t,p) =
(¢, ¢,(r)); here we identify Q, with [2F, i,/4]x S, and r is considered
as a fixed number. It is easy to see that from Lemma 5.26 we obtain

Sublemma 5.36. For p,q€Q,,

lim d(y, (@), v, (@) =d, 9)-
Sublemma 5.37. For p,qe€Q, and d(p, q) <F,

d(p,q) <infLimd, (p, q). -

Proof. First we have

ig/4 )
JA
0

and hence for r, r, € [F, 0,/4],
dr

1 [
12,(r)) — 8, 1 < —/ r
80 rJr &(n

SC(H’iO’n’f)(/lrz

< C(H, iy, n, Rlr, -1

2
Egk drSC(H’ ioan)’

aré

0

) 2/2
_ 1/2
;9—’;gk dr) |ry —rl /

This implies that for ¢, : S — S as above,

* _ * _ . _ 1/2
|¢kgk(r1)_¢kgk(r)[g(r) <C(H, Iy, n, r)lrl — 7| / .

Given any ¢ > 0, for large £ we have
|¢;gk(r) - g(r)lg(r) <é¢ H
and therefore
* _ 1/2
|68, (r) = 8Nl g < &+ Clr, ~ 1|2,
Taking |r, — rll/2 < &, we thus obtain

(1) 8, — 8l <e+Ce
on [r, &+ r] x S. Dividing [F, i;,/4] to finite number intervals 7 = r;, <
ry<---<r,=i/4,with r,_, =r, =¢”, we have
,l//k(ri)*gk _glg < £+C(H’ iOa n, 7)8
on [r;, r,I1xScCQ.
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Sublemma 5.38. Forany 6 < 0 thereexists N > 0, suchthatif k > N,
then

(v, (™' ®), w () (@) —dp, 9)| < SC(H , iy, n,7)
forall p,q,€Q,.
Proof. Letting d*(p, q) = d(y, (1)~ (p), w,(r)"'(¢)) and noting that
\Dy, |+ Dy, '|<C(H, iy, n,F),
we have '
d“(p, q)~d* @', d) < CH, iy, n, Pld(p, p') +d(q, a)I.

This implies that for each (p, q) € ﬁk X ﬁ,; , there exists a small neigh-
borhood O(p, q) ={(p', ¢"),d(p, P') +d(q, q") < 6} such that

@0, d)-d",a) < C8,

d(’',q)-dp, ) <.
The family of open sets {0,  } covers Q, xQ, , and then there is a finite
covering {O(p;, q,), i=1,2,--- ,1} of Q, xQ, . Taking N large, such
that for each (p;, g;), we have Sublemma 5.36,

|dk(P,-, q;)—d(p;,q,)}]<d fork>N.

Thus for any (p, q) € @, x Q,, there is a (p,, q;), such that (p, q) €
O(p;, 4,) and

1d*(p, q)-d*(,, a)| < Cs, |dw,q)-dp,,q) <3,
which implies that for A > N,
\d(p, q)—d(p, q)| < CE< C(H, iy, n, F)S.

We now return to the proof of Sublemma 5.37. Taking d = ¢ and N (r)
large, for k > N, we have

(N D), v, (@) —dp, DI < C(H, iy, n, P)E.
We take N = max{N(r,)}; then for k > N,

A, (r) " ), (r) " @) —dp, g)l < C&°

forall (p, q).
We now take a k > N such that

d.(p,q) <infLimd,(p, q) + ¢,
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and Sublemma 5.38 is satisfied for all ;. We now fix sucha k > N, and
let y be a curve from p to ¢ in Bi0/4(yk) such that

L, (y)<d. p,q) +e<infLimd, (p, q) +2¢,

where L,(7) is the length of y in (Q,, g,). Let p; be the intersection
of y with {r;} x§ c Q, (if they have more than one intersection, take

p; be one of them). Then dk(pl-, Pi1) 2 ¢’ and

k
ld"(p;> piyy) —dp;, P )l S Cedy(p;, pyyy)s
that is,
k
(5.39) d(p;, pi.,) <d (p;, piy) +Ced(p;, Py
By Sublemma 5.38, we have
— 1=

|gk—ylk(ri) glgSC(Haioanaf)sa

which implies that
(540 Wi D) ZAW)T 0D Wlr)” i) = Codipy i)
>d" (0, Piy) — Ced(p;, Py

Therefore,
N dw,,p,) <> dw,,p,,)+Ced d ;. p,,,)
<Y &, p,)+CeY dp;, p;,,)
<L(»)+Ce>_ dp;.p,)
< infLim d,(p, q) + 2¢ + Ce(infLim d, (p, q)),
and hence
d(p,q) <infLim d (p, q) + 2¢ + Ce(infLim 4, (p, q)).

Since ¢ > 0 is arbitrary, we have d(p, q) < infLim d,(p, q), which
proves Sublemma 5.37.
Lemma 5.41. For p,qe€Q,,
Suplim d,(p, q) <d(p, q),
and thus
lim d,(p, q) =4d(p, q).
k—oo
Proof. The proof is similar to that of Sublemma 5.32. Let y be the
minimal curve from p to ¢ in M , such that

L(y)=d(p, 9)-
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Note that g, — g almost everywhere. We can find a nearby parallel
geodesic ' of y in Q,, such that for any preassigned & > 0

L)Y <L) +e, dp,70)<e, dg,y (1) >e,

and g — g almost everywhere on y'. Thus L,(y") — L(y") and for
large k,

d (7' (0), y(1) < L,(y') < L) +e¢,
d(p,q) <L) +3e < L(y)+4e <d(p, q) + 4e.
Since ¢ > 0 is preassigned, we have

suplim d,(p, q) <d(p, 9).

Now we are ready to prove the main lemma of this section.

Lemma 5.42. Forany y € M, B, 14(9) is isomeric 1o (Bio/4(0) , 8),
where Bi0/4(0) ={x € R";|x| < iy/4} and g = ar* + s(r)* dé*, ie.,
(Bi0 /4(0) , &) is the geodesic ball of radius iy/4 in the constant sectional
curvature space form.

We start with the foliowing Lemma of [16]. We write it in the form
that we need, so that the easy proof is also provided.

Sublemma 543. Let {X,, i =1,2,...} and X be compact metric
spaces with

sup{diam(X,), diam X} < D.
If for each ¢ > 0, there exists a 2e-net of X which is the limit of a
sequence of a 4e-net N; C X, in Lipschitz distance, i.e., there exists a
2e-net {x,},cp CX and 4e-net N, ={y,} .p C X, such that

i
X, i i
a7 (y,, v,)

In
d*(x,, x,)

sup
p.q€P

-0 asi— oo,

then X, A, x.
‘Proof. Let Z, = X UX,, and define the metric d on Z; such that d
is the same with d* on X and with d* on X;,and for xe X, y e X,

. X X, i
(5.44) d(x,y)=infld" (x,x,)+d"(¥,, y)] +e

We need to show that 4 is a metric on Z, for large i. Note that ¢ > 0
is a preassigned number.

(@) d(x, y(<d(x,x)+d(x',y) or d(x,y)<d(x,y)+d(y',y) for
x,x € X and y, )" € X, . This is clear from (5.44).
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() d(x,x"y<d(x,y)+dy, x') or dy,y')<d(y,x)+d(x,y") for
x,x€X and y,y €X,. :
Proof. We take i large, such that

d¥(x , x d*iy,,
max sup—(——”—"), sup__}()’p—)’,,) =1+’1,_1+(1)
p.qep d* ‘v+p,y,) pacrd’(x,, x,) 4D

and write d(x, x') <d(x, x,) +d(x,, x,) +d(x,, x'), so we have

dix,x)<d(x, x,) + (1 41)) d(yp, y )+d(xq,x')

<d(x,x,)+dy,, y)+ @Ay, v,) +d(x,, X)) +e.

This implies
dx,x)<d(x,y)+d, x).

Similarly, we have
D(y,y)<d(y,x)+d(x,y"),
$o (Z;, d) is a metric space. Clearly, we have a' i(X, X;) < 5¢; that is,
H

X, —X. i

Proof of Lemma 5.42. Let X = (Bi0/4(0) - fizf(x), g) and X, =

o .

(B, s:) = B (¥,), &) . We claim that X, Lx.

By Lemma 5.42, we identify X, with (Q(F), g, ), where Q(F) = Bio/4(0)

~B #(0)={xeR", 27 <|x| <iy/4}. Let {x,} ., be a maximal subset
of X, such that d(x,, x,) > ¢. Then {x,} isa 2e-net of X'. We know

that {y[’f = X,},cp 1s a de-net of X, for large & by Lemma 5.41. We

also have
d* (x,, %,)

da*y,.,)

By Sublemma 5.43, we obtain d, (X, X, ) < 5S¢, which implies that X, A,
X . On the other hand, from §3 it follows that

sup (In —0 ask — oo.

p.q

X, <5 (B, ,(7) - B - 2r(7)).

Therefore, B, /4(y) - ng(y) = (Q(F), g). Since F can be any positive
number, we thus have

B, 4(¥) — {7} = (B, ;4,(0) - {0}, g).
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Now clearly we can extend the metric on Bio /4()7) - {y} to Bl.0 /4(¥), and
we finally obtain

Dio/4(}7) = (Bi0/4(0) d g) ’

which proves Lemma 5.42.

We are now ready to return to the proof of Theorem 5.4. We have the
limit M ; for each 7 € M, B, 4(¥) is isometric to the geodesic ball of
the space form. This implies that M is a Riemannian manifold of con-
stant sectional curvature A, since any distance preserving map of any two
Riemannian manifolds is a smooth isometry [23]. This proves Theorem
5.4.

Corollary 545. Let (M, , g,) be asin Theorem 5.4 and A= 1. Then

sup limdiam(M, ) < 7.

Proof. For any subsequence of (M, , g,),we can find a subsequence
which converges to a Riemannian manifold A of constant sectional cur-
vature 1, and this implies that diam(A) < =, and therefore that the
diameters of such a subsequence are uniformly bounded. This clearly
proves Corollary 5.45.

Remark 5.46. From Corollary 5.45 we may assume that the diameters
of (M, g,) are uniformly bounded.

We are finally ready to prove Theorems 5.1 and 5.2.

Proofof Theorem 5.1 and5.2. If the theorems are false, then we have a
sequence of manifolds (M, , g, ), which satisfy the conditions of Theorem
5.4, and for each k, M, is not homotopic to a manifold of constant
sectional curvature A. From Corollary 5.45, in either case, we assume
that

Supdiam(M, , g,) < d < oo.

By Theorem 5.4, we know that (M, , g,) A, (M, g) (passing to a subse-

quence if necessary), where (M, g) is a Riemannian manifold with con-

stant sectional curvature A. From the proofs above, we have inj(M) >
io/4. The rest of the proof is very similar to [18]; since inj(M,) > i, and

M, M, M, the proof is much easier.

First we imbed all M, to a compact metric space X , with metric 4, as
in §3 such that the distance function d, of M, is the same as the induced
distance from X . Then M, converges to a subset G of X in Haussdorff
distance {passing to a subsequence if necessary), and G is isometric to
M ; we can identify M with G.
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Given ¢ > 0 small, we take a minimal &-net {p;} of M, i=1,2, .-,
N, ie,

(i) The open balls B(p,, &), i=1,2,---, N, cover M.

(i) The open balls B(p,, ¢/2), i=1,2,---, N, are disjoint.

Since M has constant sectional curvature A = 1,0, or —1, the fol-
lowing lemma is well known ([18], [16]).

Lemma 5.47. There is a constant N, depending only on n and d,
so that any minimal e-net p,,--- ,py in M has the property: For any
y € M, the ball B(x, ¢) intersects at most N, of the balls B(p,, ), -+,
B(py,ée).

We now take a sequence {pf} foreach i=1,2, .-, N, sothat pf.( €
M, c X, and d(pf‘,pl.) — 0 as k — oco. Since |JB(p;, &) = M, clearly
there isa 0 < J < ¢, such that | JB(p;, ¢ —9d) = M. We take k large, so
that

dy(M,, M)<8/2, ie.

(5.48) Mc Um(Mk)cX, M, c Um(M_)CX,
dpf,p)<6/4, i=1,2,.--,N.
Then it is easy to see that ‘
k
UB(pl. ,e) =M.

As above, we may assume that d(p,, pj) > &/2, and no pair of {p;}
satisfies d(p,, p j) = ¢ by shrinking the balls a little bit if necessary. Then
by taking k even larger, we have

B(pf,a/z)nB(pf,a/2)=@, i#j,i,j=1,2,--,N.

Now note that d(p,, p;) < ¢ if and only if B(p,e) N B(p;,e) = 2. By
taking k large enough, we have

d(p;.p;)<e ifandonlyif d(p,,p,)<e,
d(pf , pf) > ¢ if and only if d(pi,pj) > €.
This implies that the minimal &-net {pf.‘, i=1,2,---, N} of M, has
the same intersection pattern as {p,} of M, for large k, i.e,
B(p,&)NB(P*pf,e)#@ ifandonlyif B(p,&)NB(p;,e)#D.

As in [18], we define the notion of center of mass.
Let ge M =M, or M, and consider a continuous map f: T — M,
where T is a topological space and d(f(t), q) <iy/4 forall t€ T. The
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map Cf(t, s) = 7,(s), where y,(s) is the unique minimal geodesic from
f(¢) to g, induces a continuous map

(5.49) [TxI—-M,(t,s)—>C(t,s),

which we interpret as an extension of f to the CT, mapping the cone
point to g .

We construct a center of mass for an order set of points (p,, p,, -** , P,,,)
with weights (4,,4,, - ,4,), 0<A; <1, Z4, =1. _

Lemma 5.50. Let em < iy/4. If d(p;,p;) <e¢, i,j=0,1,--,m.
Then a center of mass, ¢ = C(ﬂo,ﬂp“' ,pm)(A’O s Ays o s Ay,) with the follow-
ing properties is defined

(i) C depends continuously on (Ay, Ay, -+, A,),
(ll) C(po,,.. Dyt ’pm)(ﬁ'(p T A',' = 05 Y A'm)
= C(Poa”' By ,pm)(l’ Tt ij; Y A'm)5

(iii) d(p,,c) <me, i=0,1, ,m.

Proof. The proof is by induction on m. For fixed (p,, -, p,), we

m+1

will view C as a map from the standard m-simplies A™ c R into
M. For m =1, c(4y, 4,) = y(1 —4;), where y is the unique minimal
A" c R™ into M. For m=1, C(4;, A) = »(1 ~4;), where 7 is the
unique minimal geodesic from p, to p, . The induction step is completed
by identifying A™ with the cone CA™™! and appealing to (5.49).

We now first take ¢ > 0 small such that éN < i,/100. Then we take
the minimal e-net of M as above so that

dp;,p;)>¢/2 and d(p,,p;)#¢ forallp #p;,

and take a minimal ¢-net {pf‘} of M, as above for k sufficiently large,
so that {B(pf.‘ ,€)}, i=1,---, N, has the same intersection pattern as
{B(p;, €)}.

Let (Af) be a partition of unity subordinate to the covering {B(pf‘ , €)}
of M, . For x € M, , let i, <i <.-- < i, be the indices / for which
/lf.‘(x) # 0. Note that s +1 < N, by Lemma 5.47, and use Lemma 5.50
to define F: M, — M by

k k
F(x)= C(pfo"" ’p[_:)(/lio(X), ERE /I[I(x))'

Then F: M, — M is continuous.

Similarly, we can define G: M — M, by choosing a partition of unity
(1) for the cover {B(p,, £)} of M. By symmetry, it is sufficient to show
that G- F is homotopic to the identity map Ide of M, .
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Let us consider again x € M, and suppose 4,(x) # 0. From Lemma
5.50, we have d(p,, F(x)) < N,¢, and hence d(p,, p;) < &+ N;& where
p;(F(x)) # 0. Similarly, d(p, G(F(x))) < N;e and by (5.48), d(p; , p})

< a’(pﬁc ) +d(p;,p;)+dp;, pj.‘) < 2¢ + N,¢. This together with the
triangle inequality yields

d(x, G(F(x))) <d(x, p)) +dp; . p}) +d(p}, GF(x)))
<ée+2+Ne+Ne<dN+le<iy/a

Then we can connect x with G(F(x)) by the unique minimal geodesic
in M, to construct a homotopy of G - F and Ide , which shows that
G- F is homotopic to Id M, - This contradiction proves the homotopy part
of the theorems. For the case A = 1, we can apply the above results to
the universal cover M of M, which satisfies the hypothesis of Theorem
5.1. Then clearly M with the pull-back metric also satisfies the assump-
tion of Theorem 5.1, and hence is homotopic to a Riemannian manifold
of constant positive sectional curvature. This implies that M is homo-
topic to S”; by the solution of Poincaré conjectures ([29], [9]), M is
homeomorphic to S”. Hence Theorems 5.1 and 5.2 are proved.

6. Miscellaneous results

In this section we study the problems with the curvature bound
fur |Rm|("+2)/2 dg < C < co for an n-manifold M , but with a little more
work, every result in this section can be proved for the general curvature
bound f;, |Rm]”/ 2 dg < C for p > n. Using the exact same proof of
Theorem 2.11, we can prove the following.

Theorem 6.1. Let (M, g) be a compact Riemannian n-manifold which
satisfies

@

/ IR, " dg <K, < o0,
m

(ii) for any small 0 < L < 1 and f € C*(M), we have the weak
Sobolev inequality

1 2(n+1)/(n—1
W(/le‘(n+)/(n 'dg

=& [/M |Af|2 g+ _LI_Z/MfZ dg] '

>(n—1)/(n+l)
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Then the evolution equation
e}
—h = -2Ric(h
1 (h)

on M for h(0) = g has a solution on [0, T], where T =T(K,, K, , n) >
0 depends only on K|, K, and n, and we have for t €0, T1,

max |Rm(k){(z) < C 21— 1/(m)

As an easy consequence of Theorem 6.1, we have the following.
Theorem 6.2. There is a constant u= u(K,, H,d,V,n) >0 which
depends only on K, H,d,V and n, such that if (M, G) is a Rieman-
nian manifold of dim M = n, and
(i) Ric(g)>-Hg,
(i) [IRm(g)|"?dg<K,,
( i) diam(g) <d, Vol(g)>V >0,
(a) [y |Ric(g)=(R/n)g|dg < u, or
( (b) fMlRUk[ (g[kgjl_gjlgjk)/[n(n_ Dlldg < u,
then M admits an Einstein metric or a constant sectional curvature metric.
Proof. We consider the manifold M x S' with a product metric g.
Then Ric(g) > —H and diam(M x S') < max{d, 1}, Vol(Mx S") > V.
The following Sobolev inequality follows from a combination of the results
in [6] and [23]:

2myfin—1y DI 2 2
|.f] <CH,d,V) IAf]” + f
JWXSl MXXI stl

for each fe C®(M x S').

As in the proof of Theorem 2.3, we take f € C®°(M), and for any 0 <
L <1 and a cut-off function ¢: S = [0, 11/{0, 1} — [0, 1], ¢#(0) =0,
¢(t) =0 for t > L, ¢(¢)=1 for L/4 <t <3L/4, and ¢ is linear on
[0, L/4] and [3L/4, L]. As in the proof of Theorem 2.3, we have

2Ana)/(n=1) (n=1)/(n+1)
Lz/(,,_,_]) Ifl 4
saMdm(/Wﬂ@+%/fM@.
M L Jm

We now consider the evolution equation

8
7ty = —2Ric(h),;
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on M, with A(0) = g. Using Theorem 6.1, we see that there exists
T=T(H,K,,d,V,n)>0,such that & exists for ¢ € [0, 7] and

CH,K,,d,V,n)

(6.3) mﬂa}lem(h)l(r) < Ry
As before, for case (iv)(a), we have
9] C c C
37 Ric| < A|Ric +C|Rm||Rlc ,

where Roic = Ric—(R/n)h . This implies
9
ot

R"ic(h)’ dh<CH.K,.d,V,nu

and for A(T),
mﬂz}lem(h(T))l <CH,K ,d,V, n).

(6.3) yields
O0<C(H,K,,d,V,ng<h(t)<CH,K,d,V,6 n)g,
and hence
diam(h(T)) < Cd, Vol(h(T)) = CV > 0.

As in §5, a smoothing theorem of Bemelmanns, Oo and Ruh [1] also

gives
[VRm(A(T))|<C(H,K,,d,V,n).

If Theorem 6.2 is false, there exists a sequence of Riemannian manifolds
(M, , g,) which satisfy (i)-(iv) for x = 1/k, and M, does not admit any
Einstein metric.

By the Gromov Convergence Theorem, (M, , h,(T)) (passing to a sub-
sequence if necessary) converges to (M, #) in C 2-topology, and we have

Ric(h) = (R/n)h,

which shows that 4 is an Einstein metric on M . This contradiction proves
Theorem 6.2, since M is diffeomorphic to M for k large.

Similarly, we can prove case (b).

Remark 6.4. We canreplace R by A=1,0 or —1 in (iv) of Theorem
6.2. Then M admits an Einstein metric or a constant sectional curvature
metric with R = n(n — 1)A. The proof is similar to that of Sublemma
5.21.

Remark 6.5. This section serves as a contrast with the case
Sy |IRm|"?dg < K.
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